
NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Overview of the Simulator
for Offshore Wind Farm
Application (SOWFA)

Matthew Churchfield
Sang Lee
Patrick Moriarty

May 3, 2012 (8:00 AM US MST)

2

Overview of SOWFA

• Simulator for Offshore Wind Farm Applications
• It is applicable to onshore too, but over next couple of years

will contain offshore-specific tools
• Currently, it is composed of CFD tools based on OpenFOAM

coupled with a NREL’s FAST wind turbine structural/system
dynamics model

• It is meant to be modular and open-source so that others
can put in their own “modules”

• Open-source and freely available
• It can be downloaded at:

http://wind.nrel.gov/designcodes/simulators/sowfa/

http://wind.nrel.gov/designcodes/simulators/sowfa/�

3

Overview of SOWFA

• Simulator for Offshore Wind Farm Applications
• The overall vision is:

• It will have a range of fidelity levels
o Wakes computed from CFD or dynamic wake meandering model
o Inflow turbulence computed from CFD or stochastic turbulence model

SOWFA

4

Overview of SOWFA

• In its current form, SOWFA is:

“Precursor” atmospheric
simulation (OpenFOAM)

Save planes of data
every N time steps

Use saved precursor
data as inflow
boundary conditions

Actuator line turbine
aerodynamics models
(coupled with NREL’s FAST
turbine dynamics model)

Initialize wind
farm domain
with precursor
volume field 3 km 3 km

1 km

Wind farm simulation (OpenFOAM)

5

Atmospheric Boundary Layer Solver

6

Overview

3 km 3 km

1 km
periodic periodic

geostrophic
wind

rough lower surface
with temperature flux

capping inversion
controls boundary
layer height

Boussinesq
approximation for
buoyancy effects Coriolis forces included

ABLPisoSolver is a large-eddy simulation solver developed out of the
buoyantBoussinesqPisoFoam that came with OpenFOAM-1.6. It cannot be run in
RANS mode. It creates turbulent wind fields under a variety of atmospheric stability
conditions.

simulation time: 10000 –20000 s

7

Transport Equations

I. time rate of change
II. convection
III. Coriolis force due to planetary rotation
IV. density-normalized pressure gradient (deviation from hydrostatic and

horizontal-mean gradient)
V. horizontal-mean driving pressure gradient
VI. SFS momentum fluxes (stresses)
VII. buoyancy
VIII. other density-normalized forces (from turbine actuator line model)

() () T
ii

D
ij

jii
kkiij

j

i fg
x

yxp
xx

puuu
xt

u
0

3
0

0
0

0
33

1),(1~
2

ρ
δ

θ
θθτ

ρ
ε +







 −
−

∂
∂

−
∂
∂

−
∂
∂

−Ω−=
∂
∂

+
∂
∂

I II IV III V VI VII VIII

Momentum transport

Notice there is no viscous term. This is high Reynolds number flow. Viscous effects only significant
very near planetary surface. Wall model will handle this (more later)

IV VI

8

Transport Equations

I. time rate of change
II. convection
III. SFS temperature fluxes

1 provides a good explanation of atmospheric boundary layer physics.
2 is a good outline of atmospheric boundary layer LES.

() ()j
j

j
j

q
x

u
xt ∂

∂
−=

∂
∂

+
∂
∂ θθ

I II III

Potential temperature transport

1 R. B. Stull. An Introduction to Boundary Layer Meteorology. Springer Science + Business Media B. V., 2009.
2 C.-H. Moeng. A Large-Eddy Simulation Model for the Study of Planetary Boundary Layer Turbulence. Journal of the Atmospheric Sciences,
Vol. 41, No. 13, 1984, pp. 2052–2062.

Notice there is no molecular temperature conduction term. This is high Reynolds number flow.
Molecular effects only significant very near planetary surface. Wall model will handle this (more later)

9

Potential Temperature

• Temperature that a parcel of dry air would have if
adiabatically brought from some pressure level to a
reference pressure, usually 100kPA

• Simplifies the study of atmospheric stability

z

θ

stable

z

θ

neutral

z

θ

unstable

10

Buoyancy Force

• This is an incompressible formulation, with constant density,
so we need a way to account for buoyancy effects caused by
variable density

• Use the Boussinesq approximation
• Buoyancy term is

3
0

0
ig δ

θ
θθ








 −
− K3000 =θ

22 s
m0327.0)1,0,0(

K300
K30099K2

s
m)81.9,0,0(−=⋅






 −

−−

22 s
m0000.0)1,0,0(

K300
K300K300

s
m)81.9,0,0(=⋅






 −

−−

22 s
m0327.0)1,0,0(

K300
K300K301

s
m)81.9,0,0(+=⋅






 −

−−

locally stable (cool air pushed up
into warm air): negative force

locally neutral (air pushed into air
of equal temperature): zero force

locally unstable (warm air pushed up
into cool air): positive force

11

Coriolis Force

• Due to planetary rotation, there is an apparent force called
Coriolis force

• If +x is east, +y is north, and +z is up, then

• is the rotation rate vector at a location on the planetary
surface, is the planetary rotation rate (rad/s), and is the
lattitude

kjijk uΩ− ε2
















=Ω

φ
φω

sin
cos

0

j

jΩ
ω φ

12

Sub-Filter Scale Model












∂

∂
+

∂
∂

−=
i

j

j

iSFSD
ij x

u
x
u

υτ

Gradient-diffusion hypothesis

j

SFS
j x

q
∂
∂

−=
θκ

Smagorinsky model1

()
2/1

2 2




















∂
∂

+
∂
∂










∂
∂

+
∂
∂

∆=
i

j

j

i

i

j

j

i
s

SFS

x
u

x
u

x
u

x
uCυ

t

SFS
SFS

Pr
υκ =

1 J. Smagorinsky. General Circulation Experiments with the Primitive Equations, Monthly Weather Review, Vol. 91, 1963, pp. 99–164.

13

Sub-Filter Scale Model

17.013.0 −=sC

3/1V=∆









∆
+

=
lt

21

1Pr









≤∆

>













∆











∆=

0if

0if,16.7min

s

s
sl

SFSυ

z
g

s i

∂
∂

=
θ

θ0

Smagorinsky constant

SFS filter width
(V is grid cell volume)

Turbulent Prandtl
number

Length-scale for Prt

Measure of stability

(we use closer to 0.13)

If locally stable or neutral (s ≤ 0): Prt = 1/3
If locally stable (s > 0): Prt approaches 1

SFSSFS υκ 3=
SFSSFS υκ →

14

Sub-Filter Scale Model

• Model implementation in ABLPisoSolver is done
completely at cell-faces

• Avoids interpolation to faces for taking divergence
of stress

• Provides a less dissipative effect near planetary
surface

15

Wall Model

• The cost of high-Re fully-resolved LES of wall-bounded
flow scales strongly with Re.

• The planetary surface is covered with roughness
elements (dirt, rocks, vegetation) that would be
extremely expensive to resolved with the grid.

• It is inappropriate to apply no-slip at the surface
• Instead apply a model for surface stress

 1 U. Piomelli and E. Balaras, “Wall-Layer Models for Large-Eddy Simulations,” Annual Review of Fluid Mechanics, Vol. 34, pp. 349–374,
2002.

“The only economical way to perform LES of high Reynolds-number attached flow,
therefore, is by computing the outer layer only.” “Because the grid is too coarse to
resolve the inner-layer structures, the effect of the wall layer must be modeled. In
particular, the momentum flux at the wall (i.e., the wall stress) cannot be evaluated
by discrete differentiation because the grid cannot resolve either the sharp velocity
gradients in the inner layer or the quasi-streamwise and hairpin vortices that transfer
momentum in this region of the flow. Therefore, some phenomelogical relation
must be found to relate the wall stress to the outer-layer flow.”1

16

Wall Model

• Surface stress model predicts total (viscous + SFS)
stress at surface

• Assumes that first cell centers away from surface lie
within surface layer of the atmospheric boundary
layer

• So at the surface

• The wall model models and

















=
0

00
00

2313

23

13

tottot

tot

tot

D
ij

ττ
τ
τ

τ

tot
13τ tot

23τ

17

Wall Model

• ABLPisoSolver contains the wall models of
o Schumann1
o Moeng2

• Moeng’s model

1 U. Schumann. Subgrid-Scale Model for Finite-Difference Simulations of Turbulent Flow in Plane Channels and Annuli. Journal of
Computational Physics, Vol. 18, 1975, pp. 76–404.
2 C.-H. Moeng. A Large-Eddy Simulation Model for the Study of Planetary Boundary Layer Turbulence. Journal of the Atmospheric Sciences,
Vol. 41, No. 13, 1984, pp. 2052–2062.

()
() 2/12

2/1
2

2/12/1

2/12/12/12/12/12
*13

vuS

uuSuS
utot

+

−+
−=τ

()
() 2/12

2/1
2

2/12/1

2/12/12/12/12/12
*23

vuS

vvSvS
utot

+

−+
−=τ

18

Wall Model

• 1/2 denotes values at first cell centers away from surface

• Angle brackets denote a horizontal average at a certain height
• S is the resolved velocity magnitude

1/2

surface

()
() 2/12

2/1
2

2/12/1

2/12/12/12/12/12
*13

vuS

uuSuS
utot

+

−+
−=τ

()
() 2/12

2/1
2

2/12/1

2/12/12/12/12/12
*23

vuS

vvSvS
utot

+

−+
−=τ

19

Wall Model

• Friction velocity is defined as

• It needs to be approximated. Use rough wall log law

2/12

23

2

13
2
* 





 += tottotu ττ

()








+=

+
)(ln1

0*

2/1
2/12/1 Lf

z
z

u
vu

κ

()
() 2/12

2/1
2

2/12/1

2/12/12/12/12/12
*13

vuS

uuSuS
utot

+

−+
−=τ

()
() 2/12

2/1
2

2/12/1

2/12/12/12/12/12
*23

vuS

vvSvS
utot

+

−+
−=τ

20

Wall Model

• f (L) is an atmospheric stability-related function that is zero for neutral
stability. See Etling1 for more information

• L is the Obuhkov length
• z0 is the aerodynamic roughness height. It depends on height,

distribution, and shape of roughness elements on planetary surface. See
Stull2 for more information

()








+=

+
)(ln1

0*

2/1
2/12/1 Lf

z
z

u
vu

κ

1 D. Etling. Modelling the Vertical ABL Structure, in Modelling of Atmospheric Flow Fields, D. P. Lalas and C. F. Ratto, editors, World
Scientific, 1996, pp. 56–57.
2 R. B. Stull. An Introduction to Boundary Layer Meteorology. Springer Science + Business Media B. V., 2009., p. 380.

z0 (m) Terrain
1×10-1 – 5×10-1 Many trees, hedges, few buildings
3×10-3 – 2×10-2 Level grass plains
1×10-4 – 1×10-3 Large expanses of water

21

Wall Model

• A similar approach is taken to model the total temperature
flux at the surface1

• Total average temperature flux, Qs, is specified, and the wall
model creates the fluctuating temperature flux

1 C.-H. Moeng. A Large-Eddy Simulation Model for the Study of Planetary Boundary Layer Turbulence. Journal of the Atmospheric Sciences,
Vol. 41, No. 13, 1984, pp. 2052–2062.
















=

tot
j

q
q

3

0
0

totq3

22

SGS Flux Formulation

• ABLPisoSolver does not use “standard”
OpenFOAM SGS flux divergence form

• Standard:
o Compute SGS viscosity at cell centers, interpolate to faces
o Calls the function divDevReff()

return
(
 - fvm::laplacian(nuEff(), U)
 - fvc::div(nuEff()*dev(T(fvc::grad(U))))
);

()[] () () 







∂

∂
+

∂
∂

−












∂
∂

+
∂
∂

−=+−
∂
∂

=
∂
∂

i

jSGS

jj

iSGS

j
ij

SGS

j

D
ij

j x
u

xx
u

x
S

xx
υυυυυυτ 2

implicit explicit eddy viscosity form

23

SGS Flux Formulation

• ABLPisoSolver does not use “standard”
OpenFOAM SGS flux divergence form

• Our way:
o Computes SGS viscosity on cell faces, not cell centers. Less dissipative

near wall solution
o Explicitly computes momentum flux on boundaries with wall stress

model
o Explicitly compute SGS stress at interior

()

D
ij

j

tot
ij

D
ij

ij
SGSD

ij

x

S

τ

ττ

υυτ

∂
∂

=

+−= 2 Interior cell faces: explicit

Boundary cell faces: explicit

Once momentum fluxes formed, then take divergence

24

SGS Flux Formulation

• ABLPisoSolver does not use “standard”
OpenFOAM SGS flux divergence form

• Our way:
o Limitations

– It’s explicit, but we have not been limited by that
– Can not use SGS models that come with OpenFOAM

• We desire to better understand why our way
is less dissipative (favorable) near wall

• Find a way to go to “standard” formulation,
but maintain the low dissipation

25

Numerical Scheme

• Like most other OpenFOAM solvers, ABLPisoSolver uses the
PISO1 (Pressure Implicit Splitting Operation) to “implicitly”
solve the momentum and pressure equation

o I say “implicitly” because the SFS stress, temperature, and buoyancy
are not solved implicitly. They are based on previous time step and
solved sequentially

o Predictor-Corrector approach

1 R. I. Issa. Solution of the Implicitly Discretized Fluid Flow Equations by Operator-Splitting. Journal of Computational Physics, Vol. 62, 1985,
pp. 40–65.

26

Numerical Scheme

• Finite-volume formulation
o Linear interpolate of cell-center values to cell faces when needed
o Equivalent to second-order central differencing
o Rhie-Chow1-like flux interpolation is used to avoid pressure-velocity

decoupling

1 C. M. Rhie and W. L. Chow. Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation. AIAA Journal, Vol. 21,
No. 11, 1983, pp. 1552–1532.

27

Linear System Solvers

• Velocity and Temperature
o Biconjugate Gradient
o Diagonal incomplete LU matrix preconditioner

• Pressure
o Preconditioned Conjugate Gradient
o Diagonal incomplete Cholesky matrix preconditioner
 OR
o Geometric agglomerated algebraic multigrid solver
o Diagonal incomplete Cholesky smoother

28

Solver Inputs

• “0” directory
o U
o T
o pd

• “system” directory
o controlDict
o fvSchemes
o fvSolution
o decomposeParDict

• “constant” directory
o “polyMesh” directory
o ABLProperties
o transportProperties
o g
o Omega

29

Solver Inputs

// * //

// Is average wind at a specified height driven to a specified velocity?
driveWindOn true;

// Desired horizontally-averaged wind speed at a certain height (m/s)
UWindSpeed UWindSpeed [0 1 -1 0 0 0 0] 9.0;

// Desired horizontally-averaged wind direction at a height (degrees)
UWindDir 225.0;

// Height at which horizontally-averaged wind vector is specified (m)
hWind hWind [0 1 0 0 0 0 0] 90.0;

// Relaxation factor on the pressure gradient control
alpha 0.9;

// Name of the lower boundary
lowerBoundaryName "bottom";

// Name of the upper boundary
upperBoundaryName "top";

// Are statistics to be gathered?
statisticsOn true;

// At which frequency are statistics to be taken and written?
statisticsFrequency 5;

// *** //

drive wind to specified velocity at specified height

specified wind direction (direction blowing from)

specified wind speed

specified wind height

relaxation factor on driving pressure gradient update

boundary patch name corresponding to lower surface

statistics gathering frequency (every n time steps)

gather statistics about boundary layer?

boundary patch name corresponding to upper surface

constant/ABLProperties

30

Solver Inputs

constant/ABLProperties

N
0°

W
270°

E
90°

S
180°

Wind from 45°

Wind from 270°

31

Solver Inputs

// * //

transportModel Newtonian;

// Molecular viscosity (m^2/s^2)
nu nu [0 2 -1 0 0 0 0] 0.0;

// Reference temperature (K)
TRef TRef [0 0 0 1 0 0 0] 300;

// LES SGS model (options are "standardSmagorinsky")
LESModel "standardSmagorinsky";

// Smagorinsky Constant
Cs 0.135;

// LES filter width scalar
deltaLESCoeff 1.0;

// von Karman constant
kappa 0.40;

// Constants for Monin-Obuhkov universal constants
betaM 16.0;
gammM 5.0;

// Roughness height (m)
z0 z0 [0 1 0 0 0 0 0] 0.016;

// Surface temperature flux (K-m/s)
q0 q0 [0 1 -1 1 0 0 0] 0.0;

// Surface stress model (options are "Schummann“ or "Moeng")
surfaceStressModel "Moeng";

// *** //

solver reads this molecular viscosity, but does not use
it (need to fix this in the future)

SFS model (currently limited to standard Smagorinsky)

reference temperature (inverse should correspond to
fluid expansion ratio)

Smagorinsky model constant

LES filter width is cube root of cell volume times this
coefficient
von Karman constant

mean surface temperature flux

aerodynamic roughness height

used for calculating friction velocity in non-neutral flow

constant/transportProperties

surface stress model (wall model)

32

Solver Inputs

// * //

dimensions [0 1 -2 0 0 0 0];
value (0.0 0.0 -9.81);

// *** //

value of acceleration due to gravity

constant/g

// * //

dimensions [0 0 -1 0 0 0 0];
value (0.0 5.1422E-5 5.1422E-5);

// *** //

Remember, this rotation rate is:

constant/Omega
















=Ω

φ
φω

sin
cos

0

j

Earth’s rotation speed is 1 rev / 24 hours, or 7.2722 × 10-5 rad / second.

At a latitude of 45° north, we have:

rad/s
1014522.5
1014522.5

0

45sin
45cos

0
102722.7

5

55

















×
×=

















°
°×=Ω

−

−−
j

rotation rate vector at a location on
planet for Coriolis force

33

Solver Inputs

// * //

application ABLPisoSolver;

libs ("libuserfiniteVolume.so");

startFrom startTime;

startTime 0.0;

stopAt endTime;

endTime 10000.0;

deltaT 0.1;

writeControl adjustableRunTime;

writeInterval 2000.0;

purgeWrite 0;

writeFormat binary;

writePrecision 12;

writeCompression uncompressed;

timeFormat general;

timePrecision 6;

runTimeModifiable yes;

adjustTimeStep yes;

maxCo 0.75;

maxDeltaT 25.0;

// *** //

Need to use the library to use custom
buoyantBoussinesqMod boundary condition for
pressure

system/controlDict

run at a constant Courant number (adjust time step)

34

Solver Inputs

// * //

ddtSchemes
{
 default CrankNicholson 1.0;
}

gradSchemes
{
 default Gauss linear;
}

divSchemes
{
 default Gauss linear;
}

laplacianSchemes
{
 default Gauss linear uncorrected;
}

interpolationSchemes
{
 default linear;
}

snGradSchemes
{
 default uncorrected;
}

fluxRequired
{
 default no;
 pd ;
}
// *** //

we use Crank Nicolson time marching

system/fvSchemes

all interpolation to faces is linear (second-order
central) because when doing LES, we do not want
dissipation associated with upwind schemes

Typical canonical ABL meshes are completely
orthogonal, so no non-orthogonal correction is
needed

d(pd)/dx at faces is needed to update velocity fluxes

35

Solver Inputs

// * //

 pd
 {
 solver GAMG;
 tolerance 1e-6;
 relTol 0.01;
 smoother DIC;
 nPreSweeps 0;
 nPostSweeps 2;
 nFinestSweeps 2;
 cacheAgglomeration true;
 nCellsInCoarsestLevel 100;
 agglomerator faceAreaPair;
 mergeLevels 2;
 }

 pdFinal
 {
 solver GAMG;
 tolerance 1e-8;
 relTol 0.0;
 smoother DIC;
 nPreSweeps 0;
 nPostSweeps 2;
 nFinestSweeps 2;
 cacheAgglomeration true;
 nCellsInCoarsestLevel 100;
 agglomerator faceAreaPair;
 mergeLevels 2;
 }

 U
 {
 solver PBiCG;
 preconditioner DILU;
 tolerance 1e-6;
 relTol 0;
 }

 T
 {
 solver PBiCG;
 preconditioner DILU;
 tolerance 1e-6;
 relTol 0;
 }

Typical solver settings

system/fvSolution

PCG is generally fine for U and T on all sizes of grids

GAMG is generally used for pressure solve

36

Solver Inputs

options
{
 nCorrectors 3;
 nNonOrthogonalCorrectors 0;

 pdRefOn true;
 pdRefCell 55;
 pdRefValue 0;

 tempEqnOn true;
}
// *** //

typical solver settings (continued)

system/fvSolution

1 PISO predictor followed by 3 correctors. No non-
orthogonal correction on typical orthogonal grids

gradient boundary conditions are used on pressure,
so pressure level needs to be set at some cell to
“tack” down pressure level

turn temperature equation on or off

37

Solver Inputs

• Velocity
o Given a logarithmic base profile
o Non-random, divergence-free perturbations added near surface to

cause turbulence to quickly happen (similar to method used by
DeVillier’s in channel flow1).

• Temperature
o Constant temperature (300K) up to some height, then temperature

increases
o This creates a capping inversion that caps the boundary layer and

slows boundary layer vertical growth
• Pressure variable

o Initialized to zero
• Initial conditions set using “setABLFields” utility (find in

precursorABL tutorial). Could use something like “funkySetFields”

Initial conditions

1 De Villiers, E., “The Potential of Large Eddy Simulation for the Modeling of Wall Bounded Flows”, PhD Thesis, Imperial College, London,
2006.

38

Solver Inputs

(K) θ

z (m)

39

Solver Outputs

• Solution files (inside time directories)
o U, pd, T, Uprime, Tprime, nuLES*, kappaLES*
o * means defined on cell faces instead of cell centers

• “averaging” directory
o Horizontally-averaged profiles of quantities like

velocity, temperature, velocity variances, velocity
fluxes, temperature fluxes, third-order moments

o Histories of friction velocity, boundary layer depth,
and more

40

Solver Outputs

• “averaging” file structure
o Within averaging directory are time directories corresponding to

run start times. If you start a run at 0, there will be a “0”
directory. If you restart a run at 1000, there will also be a
“1000” directory.

o Most files are structured as follows where each line represents a
different time step, and starting at the third column, each
column represents a horizontally-averaged value at a
progressively greater height on the grid

o Heights corresponding the value0 through valueJ are in either
the hLevelsCell or hLevelsFace file

– hLevelsCell are cell-centered heights
– hLevelsFace are heights of horizontally-situated faces

time0 dt0 value0 value1 value2 … valueJ
time1 dt1 value0 value1 value2 … valueJ
 …
timeN dtN value0 value1 value2 … valueJ

41

Solver Outputs

• “averaging” file structure

Cell-center quantities Description
T_mean

U_mean, V_mean, W_mean

uu_mean, vv_mean, ww_mean

uv_mean, uw_mean, vw_mean

wuu_mean, wvv_mean, www_mean

wuv_mean, wuw_mean, wvw_mean

Tu_mean, Tv_mean, Tw_mean

θ

u v w

''uu ''vv ''ww

''vu ''wu ''wv

''' uuw ''' vvw ''' www

''' vuw ''' wuw ''' wvw

''uθ ''vθ ''wθ

42

Solver Outputs

• “averaging” file structure

Cell-face quantities Description
R11_mean, R22_mean, R33_mean

R12_mean, R13_mean, R23_mean

q1_mean, q2_mean, q3_mean

phiM Non-dimensional velocity shear

D
11τ D

22τ D
33τ

D
12τ D

13τ D
23τ

1q 2q 3q

mφ

Global quantities Description
ReLES LES Reynolds number1

scriptR Near surface ratio of resolved to
 subgrid scale stress1

uStar Friction velocity

zi Boundary layer depth

LESRe

ℜ

*u

iz

1 J. Brasseur and T. Wei. Designing Large-Eddy Simulation of the Turbulent Boundary Layer to Capture Law-of-the-Wall Scaling, Physics of
Fluids, Vol. 22, No. 2, 2010.

43

Guidelines for Use

• +x must be east, +y must be north, +z must be up
• Domain must be large enough to resolve large

structures
o At least 3km in horizontal and 1km in vertical for neutral

and lightly unstable cases
o At least 5km in horizontal and 2km in vertical for

moderately to strongly convective cases
– The cases will resolve large convection cells or rolls

• Must use adequate vertical grid resolution, small
enough cell aspect ratio, and proper Smagorinsky
constant to recover law-of-the-wall scaling

44

Guidelines for Use

• Law-of-the-wall scaling
o This follows the work of Brasseur and Wei1

o The problem:

1 J. Brasseur and T. Wei. Designing Large-Eddy Simulation of the Turbulent Boundary Layer to Capture Law-of-the-Wall Scaling, Physics of
Fluids, Vol. 22, No. 2, 2010.

Log-law mismatch Improved log-law agreement

45

Guidelines for Use

• Law-of-the-wall scaling
o This follows the work of Brasseur and Wei1

o The problem:

1 J. Brasseur and T. Wei. Designing Large-Eddy Simulation of the Turbulent Boundary Layer to Capture Law-of-the-Wall Scaling, Physics of
Fluids, Vol. 22, No. 2, 2010.

overshoot Improved log-law agreement

z
U

u
z

m ∂
∂

=
*

κφ

46

Limitations

• Think of this as a beta version
o We need to perform more validation, you can help

• Neutral or unstable flow only

o Needs a more sophisticated SFS model to compute stable flow
o We are working on implementing a dynamic Smagorinsky model and/or

finding way back to OpenFOAM standard stress formulation to use SGS models
that come with OpenFOAM

• Only works on flat terrain
o Will add in irregular terrain capability later this year

• Currently set up for homogeneous surface roughness and heating
o We are thinking about how to locally apply wall model

• Not tested on truly unstructured meshes
o We have designed the solver with hexahedral cells of uniform height at the

surface in mind

47

Actuator Line Turbine Model

48

Overview

• Resolving turbine blade
geometry with high-Re LES is
infeasible

• An actuator approach does
not require a very fine grid
around turbine blades

• Creates wake, tip, root, and
bound vortices

• Does not create blade
boundary layer turbulence

• Depends upon airfoil look-up
tables

49

Theory

• Method of Sørensen and Shen1

• Blades discretized into spanwise
sections of constant airfoil, chord,
twist, oncoming wind

• Airfoil lookup tables used to
calculate lift and drag at each
actuator section

• Force on flow is equal and opposite
to blade force

• Force is normalized and projected
back to flow

1 Sørensen, J. N. and Shen, W. Z., “Numerical Modeling of Wind Turbine Wakes”, Journal of Fluids Engineering 124, 2002, pp. 393-399.

We follow the methodology of Sørensen and Shen1

() () T
ii

D
ij

jii
kkiij

j

i fg
x

yxp
xx

puuu
xt

u
0

3
0

0
0

0
33

1),(1~
2

ρ
δ

θ
θθτ

ρ
ε +







 −
−

∂
∂

−
∂
∂

−
∂
∂

−Ω−=
∂
∂

+
∂
∂

50

Theory

• Force Projection
o How do you take force calculated at actuator line points and project it

onto the CFD grid as a body force?
o How do you smooth the force to avoid numerical oscillation?
o Sørensen and Shen use a Gaussian projection

o is the actuator element force
o is the force field projected as a body force onto CFD grid
o r is distance between CFD cell center and actuator point
o controls Gaussian width.

()

















−=

2

2/33 exp
επε
rFrf

A
iT

i

A
iF
T

if

ε

51

Theory

• Projection Width
o Troldborg1 recommends where is the grid cell length

near actuator line
o We found this to be the minimum in order to maintain an oscillation-

free solution using central differences
o We think should be tied to some physical blade length, like chord,

but have not come up with a definitive guideline.
o See the AIAA paper by Martínez et al.2

2/ =∆xε x∆

1 Troldborg, N., “Actuator Line Modeling of Wind Turbine Wakes”, PhD Thesis, Technical University of Denmark, Lyngby, Denmark, 2008.
2 Martinez, L. A., Leonardi, S., Churchfield, M. J., Moriarty, P. J., “A Comparison of Actuator Disk and Actuator Line Wind Turbine Models and
Best Practices for Their Use”, AIAA Paper 2012-900, Jan. 2012.

ε

52

Actuator Line Model Inputs

globalProperties
{
 outputControl "timeStep";
 outputInterval 1;
}

turbine1
{
 turbineType "NREL5MWRef";
 baseLocation (1500.0 1500.0 0.0);
 numBladePoints 40;
 pointDistType "uniform";
 pointInterpType "linear";
 bladeUpdateType "oldPosition";
 epsilon 5.0;
 tipRootLossCorrType "none";
 rotationDir "cw";
 Azimuth 232.0105;
 RotSpeed 9.0;
 Pitch 0;
 NacYaw 225.0;
 fluidDensity 1.23;
}

turbine2
{
 turbineType “GE1.5SLE";
 …

constant/turbineArrayProperties

Either “timeStep” or “runTime”
Output interval in timesteps or seconds

List turbines in the following blocks

Type of turbine
Location of the center of the tower base
Number of actuator elements along a blade
Currently, elements are uniformly distributed
Type of interpolation of velocity to actuator point, “linear” or “cellCenter”
Use velocity at old or new blade position
Gaussian projection width
Options are “none” or “Glauert”
Rotor rotation sense as viewed from upstream
Initial rotor azimuth angle
Initial rotor speed in RPM
Initial blade collective pitch
Initial nacelle yaw position
Density use to compute forces, torque, and power

List as many other turbines of any kind as you desire

53

Actuator Line Model Inputs

NumBl 3;
TipRad 63.0;
…
TorqueControllerType “fiveRegion";
PitchControllerType “none”
YawControllerType "none";

TorqueControllerParams
{
 CutInGenSpeed 670.0;
 RatedGenSpeed 1173.7;
 Region2StartGenSpeed 871.0;
 Region2EndGenSpeed 1161.963;
 CutInGenTorque 0.0;
 RatedGenTorque 43.09355E3;
 RateLimitGenTorque 15.0E3;
 KGen 2.55764E-2;
 TorqueControllerRelax 1.0;
}

PitchControllerParams
{
 PitchControlStartPitch 0.0;
 PitchControlEndPitch 7.6;
 PitchControlStartSpeed 15.77;
 PitchControlEndSpeed 16.0;
 RateLimitPitch 4.5;
}

Closely follows NREL FAST input file, so see FAST manual1

constant/turbineProperties/”turbineName”

Torque control parameters (controls rotor speed below Region 3)

Simple linear pitch control based on rotor speed (not realistic, though!) Just
linearly varies pitch between two specified rotor speeds with a maximum rate of
change limit.

1 Jonkman, J. and Buhl, M., FAST User’s Guide, NREL/EL-500-38230, NREL technical report, 2005. Accessible at:
http://wind.nrel.gov/designcodes/simulators/fast/FAST.pdf
2 Jonkman, J., Butterfield, S., Musial, W., and Scott, G., Definition of a 5-MW Reference Wind Turbine for Offshore System Development, NREL/TP-
500-38060, Feb. 2009.

A file is needed for each type turbine in the array

Either uses fixed speed (“none”) or like NREL 5MW2 (“fiveRegion”)

Generator speed at cut-in wind speed (RPM)
Generator speed at rated wind speed (RPM)
Generator speed at the start of Region 2 (the end of Region 1-1/2) (RPM)
Generator speed at the end of Region 2 (the beginning of Region 2-1/2) (RPM)
Generator control torque at cut-in wind speed (N-m)
Generator control torque at rated wind speed (N-m)
Maximum allowable rate of generator control torque change (N-m/s)
Region 2 generator control constant (N-m/RPM) - torque = K*Omega^2
Relaxation factor on generator control torque update each time step.

http://wind.nrel.gov/designcodes/simulators/fast/FAST.pdf�

54

Actuator Line Model Inputs

Airfoils
(
 "Cylinder1"
 "Cylinder2"
 …
 "NACA64_A17"
);

BladeData
(
// radius(m) c(m) twist(deg) airfoil
 (2.8667 3.542 13.308 0)
 (5.6 3.854 13.308 0)
 …
 (58.9 2.086 0.37 7)
 (61.6333 1.419 0.106 7)
);

constant/turbineProperties/”turbineName”
List of airfoils used to define blade

Blade properties vs. radius. Note that airfoil 0 corresponds to first
airfoil in “Airfoils” list, and so on

55

Actuator Line Model Inputs

airfoildata
(
// alpha C_l C_d
 (-180 0 0.0185)
 (-175 0.394 0.0332)
 (-170 0.788 0.0945)
 (-160 0.67 0.2809)
 (-155 0.749 0.3932)
 (-150 0.797 0.5112)
 (-145 0.818 0.6309)
 …
 (-0.5 0.458 0.0057)
 (0 0.521 0.0057)
 (0.5 0.583 0.0057)
 (1 0.645 0.0058)
 (1.5 0.706 0.0058)
 (2 0.768 0.0059)
 …
 (170 -0.788 0.0969)
 (175 -0.394 0.0334)
 (180 0 0.0185)
);

An airfoil file is needed for every different airfoil
used by each distinct turbine in the array

This is simply a list of coefficient of lift and drag
versus angle of attack

constant/airfoilProperties/”airfoilName”

56

Actuator Line Model Outputs

• Solution files (inside time directories)
o bodyForce: body force projected onto flow field

• “turbineOutput” directory
o Outputs various turbine information such as power,

torque, rotor speed, etc.
o Outputs information at each blade point such as angle of

attack, velocity magnitude, lift, drag, etc.

57

Actuator Line Model Outputs

• “turbineOutput” file structure
o Within turbineOutput directory are time directories

corresponding to run start times. If you start a run at 0,
there will be a “0” directory. If you restart a run at 1000,
there will also be a “1000” directory.

– Within the specific time directories are a files for global turbine
data files for quantities like power, torque, rotor speed, etc.

– Also there are files for blade local quantities like lift, drag, angle of
attack, etc. vs. span.

58

Actuator Line Model Outputs

• Global quantity file structure

turbine0 time0 dt0 value
turbine1 time0 dt0 value
…
turbineM time1 dt0 value

turbine0 time1 dt1 value
turbine1 time1 dt1 value
…
turbineM time1 dt1 value

 …

turbine0 timeN dtN value
turbine1 timeN dtN value
…
turbineM timeN dtN value

59

Actuator Line Model Outputs

• Blade radius dependent file structure
turbine0 blade0 time0 dt0 value0 value1 value2 … valueJ
turbine0 blade1 time0 dt0 value0 value1 value2 … valueJ
turbine0 blade2 time0 dt0 value0 value1 value2 … valueJ

turbine1 blade0 time0 dt0 value0 value1 value2 … valueJ
turbine1 blade1 time0 dt0 value0 value1 value2 … valueJ
turbine1 blade2 time0 dt0 value0 value1 value2 … valueJ
 …

turbineM blade0 time0 dt0 value0 value1 value2 … valueJ
turbineM blade1 time0 dt0 value0 value1 value2 … valueJ
turbineM blade2 time0 dt0 value0 value1 value2 … valueJ

 …

turbine0 blade0 timeN dtN value0 value1 value2 … valueJ
turbine0 blade1 timeN dtN value0 value1 value2 … valueJ
turbine0 blade2 timeN dtN value0 value1 value2 … valueJ

turbine1 blade0 timeN dtN value0 value1 value2 … valueJ
turbine1 blade1 timeN dtN value0 value1 value2 … valueJ
turbine1 blade2 timeN dtN value0 value1 value2 … valueJ
 …

turbineM blade0 timeN dtN value0 value1 value2 … valueJ
turbineM blade1 timeN dtN value0 value1 value2 … valueJ
turbineM blade2 timeN dtN value0 value1 value2 … valueJ

60

Actuator Line Model Outputs

Global turbine quantities Description
powerRotor Rotor power/density (W)

rotSpeed Rotor speed (rpm)

thrust Thrust (N)

torqueRotor Rotor torque (N-m)

torqueGen Generator torque (N-m)

azimuth Rotor azimuth angle (degrees)

nacYaw Nacelle yaw angle (degrees)

pitch Blade collective pitch (degrees)

61

Actuator Line Model Outputs

Blade Local quantities Description
alpha Angle of attack (degrees)

axialForce Force along rotor shaft axis (N)

Cd Coefficient of drag

Cl Coefficient of lift

drag Drag force (N)

lift Lift force (N)

tangentialForce Force in rotor rotation tangential direction (N)

Vaxial Component of velocity along rotor shaft axis (m/s)

Vradial Component of velocity along blade radius (m/s)

Vtangential Component of velocity in rotation tangential direction (m/s)

x, y, z Actuator point position in space (m)

62

Guidelines for Use

• +x must be east, +y must be north, +z must be up
• Use at least 20 CFD grid cells across the rotor

diameter
• Use at least 40 CFD grid cells across the rotor if you

want to well resolve tip/root vortices
• We are currently performing a study to better

understand power production dependence on
surrounding grid resolution, epsilon, number of
actuator points, and use of the tip loss correction

• Set epsilon parameter to at least twice the local grid
cell length, but somewhere around the mean blade
chord length

63

Implementation

• Turbine model implemented as a class
o “horizontalAxisWindTurbinesALM”
o See src/turbineModels/horizontalAxisWindTuribinesALM

• Any solver can be modified to contain an object of
the class

• That object is the entire turbine array

64

Implementation

• Modifying pisoFoam to include turbine class
o Add this to createFields.H to declare object of turbine class

o Add this to the includes part of the solver code

o Add this line to solver code momentum equation to apply forces

o Add this line at the beginning or end of the time loop to advance the
turbine one time step

 // Create an object of the horizontalWindTurbineArray class if there
 // is to be a turbine array
 //
 turbineModels::horizontalAxisWindTurbinesALM turbines(U);

fvVectorMatrix UEqn
(
 fvm::ddt(U)
 + fvm::div(phi, U)
 + turbulence->divDevReff(U)
 - turbines.force()
);

turbines.update();

#include “horizontalAxisWindTurbinesALM.H”

65

Implementation

• Make/options file needs to be modified

 EXE_INC = \
 -I$(LIB_SRC)/turbulenceModels/incompressible/turbulenceModel \
 -I$(LIB_SRC)/transportModels \
 -I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel \
 -I$(LIB_SRC)/finiteVolume/lnInclude \
 -I$(WM_PROJECT_USER_DIR)/src/turbineModels/lnInclude

EXE_LIBS = \
 -L$(FOAM_USER_LIBBIN) \
 -lincompressibleTurbulenceModel \
 -lincompressibleRASModels \
 -lincompressibleLESModels \
 -lincompressibleTransportModels \
 -lfiniteVolume \
 -lmeshTools \
 -llduSolvers \
 -luserTurbineModels

66

FAST Coupling to OpenFOAM

67

Coupling FAST to OpenFOAM

• NREL’s FAST1 (Fatigue, Aerodynamics, Stress, and
Turbulence) tool is a model for wind turbine structural,
aero, and system dynamics

• Its aerodynamics part is through blade element
momentum theory (BEM)

• Here, we coupled FAST to the actuator line model
• The “momentum” part of BEM is replaced by CFD

o CFD feeds FAST inflow information at blade elements
o Aerodynamic forces computed by look-up table (“blade

element” theory--just like normal actuator line)
o Turbine structural and system response computed
o Aerodynamic forces fed back to CFD

1 Jonkman, J. and Buhl, M., FAST User’s Guide, NREL/EL-500-38230, NREL technical report, 2005. Accessible at:
http://wind.nrel.gov/designcodes/simulators/fast/FAST.pdf

68

Coupling FAST to OpenFOAM

Do while (t < tmax)

 call FLOW_Solver

 call openFOAM2FAST

 call FAST

 call Fast2OpenFOAM

End do

OpenFOAM FAST
(NREL aero-elastic code)

velocity

Compute structural
response and blade
rotation

aeroforces w/ blade coord.
in actuator line representation

Multiple-Turbine
capability

Turbulence is different
than a TurbSim result!

69

Implementation

• Similar to standard actuator line
• Turbine model implemented as a class

o “horizontalAxisWindTurbinesFAST”
o See src/fastturb/horizontalAxisWindTuribinesFAST

• Any solver can be modified to contain an object of
the class

• That object is the entire turbine array

70

Implementation - fastPisoSolver

 …

 label pRefCell = 0;
 scalar pRefValue = 0.0;
 setRefCell(p, mesh.solutionDict().subDict("PISO"), pRefCell, pRefValue);

 singlePhaseTransportModel laminarTransport(U, phi);

 autoPtr<incompressible::turbulenceModel> turbulence
 (
 incompressible::turbulenceModel::New(U, phi, laminarTransport)
);

 turbineModels::horizontalAxisWindTurbinesFAST turbfast(U);

-Create an object of the horizontalWindTurbinesFAST class if there is to be a
turbine array

•Add “createFields.H” file to the includes part of the solver code (pisoFoam.C)

int main(int argc, char *argv[])
{
 #include "setRootCase.H"
 #include "createTime.H"
 #include "createMesh.H"
 #include "createFields.H"
 #include "initContinuityErrs.H”

createFields.H

71

Implementation - fastPisoSolver
…
#include "horizontalAxisWindTurbinesFAST.H“
…

extern "C"
{
 void fastinit_(float& , int&);
 void fastread_(float*, float*, float*);
 void fastrun_();
 void fastgetbldpos_(float*, float*, float*);
 void fastgetbldforce_(float*, float*, float*);
 void fastend_();
}

int main(int argc, char *argv[])
{
 … #include "createFields.H“ …

 // * //
 // initialize FAST
 Info << "Number of Turbs: " << turbfast.turbNum << endl;
 float tstep = runTime.deltaT().value();
 for(int turbNo=0; turbNo<turbfast.turbNum; turbNo++)
 {
 if(Pstream::myProcNo() == turbNo)
 {
 fastinit_(tstep, turbNo);
 fastgetbldpos_(turbfast.bldptx[turbNo], turbfast.bldpty[turbNo], turbfast.bldptz[turbNo]);
 }
 turbfast.getBldPos(turbNo);
 }

 …

Declare wrapper functions written Fortran90

-Initialize FAST
-Read wind information from OpenFOAM
-Run FAST
-transfer updated blade element positions to OpenFOAM
-transfer updated aerodynamic forces from blade elements to OpenFOAM
-Terminate FAST

FAST initialization
-Get number of blades
-Get time-step from OpenFOAM => FAST time step
-Loop through each turbines
-Turbine ID = MPI_RANK (CPU #)

-For given CPU #, initialize FAST

-Get current blade elem. pos.

-Transfer blade elem. Pos. to OpenFOAM

pisoFoam.C

72

Implementation - fastPisoSolver.C
Continued from last slide…

 // Pressure-velocity PISO corrector
 {

 for(int turbNo=0; turbNo<turbfast.turbNum; turbNo++)
 {
 turbfast.getWndVec(turbNo);
 if(Pstream::myProcNo() == turbNo)
 {
 fastread_(turbfast.uin[turbNo], turbfast.vin[turbNo], turbfast.win[turbNo]);
 fastrun_();
 fastgetbldpos_(turbfast.bldptx[turbNo], turbfast.bldpty[turbNo], turbfast.bldptz[turbNo]);
 fastgetbldforce_(turbfast.bldfx[turbNo], turbfast.bldfy[turbNo], turbfast.bldfz[turbNo]);
 }
 turbfast.computeBodyForce(turbNo);
 }

 // Momentum predictor
 fvVectorMatrix UEqn
 (
 fvm::ddt(U)
 + fvm::div(phi, U)
 + turbulence->divDevReff(U) - turbfast.force()
);

 …
 fastend_();
 …

-Loop through turbines

-get wind data for specified turbine

-transfer OpenFOAM wind data to FAST
-run FAST
-pass updated blade elem. pos. to OpenFOAM
-pass updated aerodynmic force to OpenFOAM

-project the aerodynamic force into the OpenFOAM
computational domain

-added the aerodynamic force from FAST as a bodyforce
term in momentum eq.

-terminate FAST (loops through all the turbines)

pisoFoam.C

73

Implementation – Make file

• Make/options file needs to be modified

 EXE_INC = \
 -I$(LIB_SRC)/turbulenceModels/incompressible/turbulenceModel \
 -I$(LIB_SRC)/transportModels \
 -I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel \
 -I$(LIB_SRC)/finiteVolume/lnInclude \
 -I$(WM_PROJECT_USER_DIR)/src/fastturb/lnInclude

EXE_LIBS
 -Lfast/bin \
 -L$(FOAM_USER_LIBBIN) \
 -lincompressibleRASModels \
 -lincompressibleLESModels \
 -lincompressibleTransportModels \
 -lfiniteVolume \
 -lmeshTools \
 -luserfastturb \
 -lgfortran \
 -lfast

../fastPisoSolver/
 /fast/bin/
 libfast.a
 /Make/
 files
 options
 createFields.H
 pisoFoam.C

FAST compiled
into static library

74

FAST Input files: NREL 5MW Turbine
/caseStudyDir/

Required files are:

Primary.fst
specifies configurations for initial conditions, controls, turbine geometry
and mass, drive train, output file formats, etc…

USERWIND.wnd
file used to invoke reading in external flow data

NRELOffshrBsline5MW_AeroDyn.ipt
AeroDyn input for air specification, blade geometry, airfoil data
(coefficients for lift/drag table are included in /caseStudyDir/AeroData/)

NRELOffshrBsline5MW_Blade.ipt
Specifies blade properties: stiffness, mode shapes etc..

NRELOffshrBsline5MW_Tower_Onshore.ipt
ditto for Tower properties

75

FAST Actuator Line Model Inputs

turbine0
{
 refx 200.0; - x location of tower base
 refy 0.0; - y location of tower base
 refz 0.0; - z location of tower base
 hubz 100.0; - hub height
}

turbine1
{
 refx 400.0;
 …

general
{
 yawAngle 0.0; - turbine yaw angle
 numberofBld 3 - # of blades
 numberofBldPts 62; - # of actuator elements per blade
 rotorDiameter 126.3992; - rotor diameter
 epsilon 5.0; - Gaussian width parameter
 smearRadius 13.15; - radius beyond which Gaussian has no effect
 effectiveRadiusFactor 1.21; - scale factor for rotor diameter
 pointInterpType 1; - option for linear interpolation of velocities
}

constant/turbineArrayPropertiesFAST

76

FAST Actuator Line Model Outputs
• Load files : primary0.out, primary1.out, …
• These include time histories of load parameters

specified in primary.fst
 e.g. out-of-plane blade root bending moments, torque, yaw bearing

moments, power, rotor speed …

• Can be imported into Excel / MatLab for figures

77

Guidelines for Use

• See actuator line guidelines

78

Sample Output

Two NREL 5-MW turbines subjected to neutrally stable low-roughness
atmospheric conditions showing the instantaneous streamwise velocity
contours with iso-surface of Q invariant fixed at 0.0275 1/s

79

Sample Output

NREL 5MW turbine in unstable high-roughness
atmospheric flow with mean speed at 8 m/s @
hub height

80

Wind Plant Simulation

81

Wind Plant Simulation
• Combination of the elements

discussed above

“Precursor” atmospheric
simulation (OpenFOAM)

Save planes of data
every N time steps

Use saved precursor
data as inflow
boundary conditions

Actuator line turbine
aerodynamics models
(coupled with NREL’s FAST
turbine dynamics model)

Initialize wind
farm domain
with precursor
volume field 3 km 3 km

1 km

Wind farm simulation (OpenFOAM)

82

Input

• Nearly the same as atmospheric boundary
layer solver

• Difference in constant/ABLProperties

// Is the turbine array active?
turbineArrayOn true;

…

// Mean field averaging start time.
meanAvgStartTime 12100.0;

// Correlation field averaging start time.
corrAvgStartTime 12200.0;

Activate the actuator turbine models

We no longer take horizontal averages resulting
in a mean profile. We take time averages. The
mean is built up on the fly starting at
meanAvgStartTime, and fluctuations away from
that mean are taken to build correlations
starting at corrAvgStartTime. Allow enough
time for transients to pass before starting to
build up mean, and allow enough time for mean
to be built before building up correlations.

83

Output

• All the turbine information
• Instantaneous Fields

o U, T, p, u ,̕ T ̕

• Mean Fields
o Umean, Tmean

• Correlation Fields
o ‹ui̕uj̕›, ‹Tu̕j̕›

84

Guidelines for Use
• Make sure domain boundaries have either predominant

inflow or outflow
o Remember that with Coriolis, wind changes directions with altitude
o Possible to have wind flowing in near ground and flowing out above
o We do not have a good boundary condition for that case

• Use local mesh refinement around the turbines
o but do it gently (i.e. give the turbulence time to cascade down before

going to the next local refinement region)

1.75 m

7 m

3.5 m

10 m

2.5 m

5 m

85

Guidelines for Use
• We generally use a time step such that the actuator line tip

does not travel through more than one cell per time step
• Can use larger time steps with actuator disk (which will be

part of SOWFA soon).

86

Limitations/Known Issues
• The wall shear stress model in the atmospheric solver is

based on horizontal averages in the first layer of cells away
from the surface
o Horizontal averages do not make sense in the wind farm
o Local refinement means that the first layer of grid cells are not all at

the same height

• What are the proper pressure boundary conditions with
inflow/outflow?
o We use Neumann and retain the driving pressure gradient term in the

equations, setting driving pressure to the average value from the
precursor

87

Compiling The Codes

88

Compiling the codes

• Make sure you have OpenFOAM 2.0 or higher installed
• Download the SOWFA codes at:

http://wind.nrel.gov/designcodes/simulators/sowfa/
• In your user OpenFOAM directory, put “user-2.0.x.tar.gz” and

do “tar -xvzf user-2.0.x.tar.gz”. Rename the “user” part to your
username, and rename the “2.0.x” to the version of
OpenFOAM you have installed.

• Run ./Allwclean
• Run ./Allwmake
• See the README files

http://wind.nrel.gov/designcodes/simulators/sowfa/�

89

Example Cases:
Precursor Atmospheric Boundary Layer

Simulation

90

Atmospheric Boundary Layer

• See “tutorials/precursorABL”
• Uses the solver ABLPisoSolver
• 2 cases: Neutral and unstable (-zi/L ≈ 4)
• Wind: 9 m/s from 225 deg at 90 m
• Domain size: 3km × 3km × 1 km (x × y × z)

o Periodic in the horizontal
• Grid size: 150 × 150 × 50

o 20 m resolution throughout
o Coarser than we would normally run a simulation

• Run on 32 processors
o Took about 27 min of wall clock time per 1000 s of simulation
o Ran to 14,000 s of simulation time

91

The Process (see the “Allrun” script)

• Build a coarse mesh with blockMesh (serial)
o Builds a hexahedral mesh

• Decompose the domain with decomposePar (serial)
• Use refineHexMesh (parallel) to globally refine mesh to desired

resolution
o Splits hexahedral cells in half in each direction

• Initialize the solution with setFieldsABL (parallel)
• Run the solver from time 0 to quasi-equilibrium
• Run the solver from quasi-equilibrium to +2000 s

o Run with sampling of contour planes and boundary data (boundary data to be used later in
wind plant simulation as turbulent inflow)

92

Results

neutral unstable

93

Results

neutral unstable

94

Results

neutral unstable

95

Results

U (m/s)

96

Example Cases:
FAST-Couple Actuator Lines in Duct Flow

97

Case Study: fastDuct

200m
200m

200m
200m

200m

200m

200m

FLOW

NREL 5 MW Turbines

Uniform inflow condition at U∞ = 8 m/s
Periodic BCs laterally (y and z directions)

Computational Domain

100m

../tutorials/fastDuct/

outflow

98

Sample Run

2 wind turbines

Blade loadings are computed using FAST

t = 140 sec

• In ../fastDuct/ execute “Allrun” script
 - currently set to run on a single node with 8 CPU cores
 - generates uniform mesh
 - decomposes the domain into nodes x cores
 - runs fastPisoSolver in parallel

• Once finished running:
 - execute “reconstructPar –time 140 (any desired saved time)
 - execute “foamToVTK –time 140
 - use ParaView for visualization
 - examine loads data from primary*.out using Excel/MatLab

• Run “AllClean” to remove saved flow data, loads, and the grid

99

Sample Run

2 wind turbines

Blade loadings are computed using FAST

Downstream turbine is being approached with wake structures

t = 140 sec

Streamwise Velocity Contours and iso-surface

100

Out-of-plane Blade Loadings and Power Output from FAST

Blade-tip acceleration

Blade root shear force

Example: primary0.out
 - loads data primary*out can
be opened using Excel with
“tab delimited” options

 - columns of data can be
selected to generate figures

101

Out-of-plane Blade Loadings and Power Output from FAST

Blade-tip acceleration

Blade root shear force

Blade root out-of-plane bending moment Power generation

102

Example Cases:
Wind Farm Simulation

103

Wind Farm Simulation

• See “tutorials/windPlant”
• Uses the solver windPlantPisoSolver
• 2 cases: Neutral and unstable (-zi/L ≈ 4)
• Wind: 9 m/s from 225 deg at 90 m
• Domain size: 3km × 3km × 1 km (x × y × z)
• Grid size:

o Background grid is same as ABL precursor
o Locally refined down to 2.5 m around single 5MW turbine in horizontal

center of domain with 90 m hub height
• Run on 64 processors

o Took 21 hrs for 750 s of simulation time
o Much smaller time step than precursor (dt = 0.015s)

104

The Process (see the “Allrun” script)

• Build a coarse mesh with blockMesh (serial)
o Builds a hexahedral mesh

• Locally refine with topoSet (serial) and refineMesh (serial)
• Use refineMesh (serial) to globally refine mesh to desired resolution

o Splits hexahedral cells in half in each direction

• Use initial field files from precursor simulation, but change the
periodic boundaries to inflow/outflow (timeVaryingFixedMapped) to
use saved boundary data from precursor using changeDictionary
(serial)

• Renumber the cells to get better matrix banding with renumberMesh
(serial)

• Decompose the domain with decomposePar (serial)
• Initialize solution with precursor field using mapFields (serial)
• Run the solver

105

Results

The effect of too rapid a transition in
grid resolution

Increasing the filter width helped,
but not the best fix

106

Results

Results from a 48 turbine simulation1 of the Lillgrund offshore wind farm

1 Churchfield, M. J., Lee, S., Michalakes, J., and Moriarty, P. J., “A Numerical Study of the Effects of Atmospheric and Wake Turbulence on Wind Turbine
Dynamics,” Journal of Turbulence, Vol. 13, No. 14, pp. 1-32, 2012.

107

Some References

Churchfield, M. J., Lee, S., Michalakes, J., and Moriarty, P. J., “A Numerical Study of the Effects
of Atmospheric and Wake Turbulence on Wind Turbine Dynamics,” Journal of Turbulence, Vol.
13, No. 14, pp. 1-32, 2012.

Churchfield, M. J., Lee, S., Moriarty, P. J., Martinez, L. A., Leonardi, S., Vijayakumar, G., and
Brasseur, J. G., “A Large-Eddy Simulation of Wind-Plant Aerodynamics,” AIAA Paper AIAA-2012-
537, 2012.

Lee, S., Churchfield, M. J., Moriarty, P. J., Jonkman, J., “Atmospheric and Wake Turbulence
Impacts on Wind Turbine Fatigue Loading,” AIAA Paper AIAA-2012-540, 2012.

Martinez, L. A, Leonardi, S., Churchfield, M. J., Moriarty, P. J., “A Comparison of Actuator Disk
and Actuator Line Wind Turbine Models and Best Practices for Their Use,” AIAA Paper AIAA-
2012-900, 2012.

108

Acknowledgements

• Atmospheric Boundary Layer and OpenFOAM-
related
o Jim Brasseur, Eric Patterson, Ganesh Vijayakumar,

Adam Lavely, Mike Kinzel

• Actuator Line Model
o Tony Martínez, Stefano Leonardi

• NREL collaborators
o Pat Moriarty, Mike Sprague, Julie Lundquist, John

Michalakes, Avi Purkayastha

109

Help

• First check the NWTC Codes forum at:
https://wind.nrel.gov/forum/wind/

• Then contact
o Matt Churchfield (matt.churchfield@nrel.gov)
o Sang Lee (sang.lee@nrel.gov)

https://wind.nrel.gov/forum/wind/�
mailto:matt.churchfield@nrel.gov�
mailto:sang.lee@nrel.gov�

	Slide Number 1
	Overview of SOWFA
	Overview of SOWFA
	Overview of SOWFA
	Atmospheric Boundary Layer Solver
	Overview
	Transport Equations
	Transport Equations
	Potential Temperature
	Buoyancy Force
	Coriolis Force
	Sub-Filter Scale Model
	Sub-Filter Scale Model
	Sub-Filter Scale Model
	Wall Model
	Wall Model
	Wall Model
	Wall Model
	Wall Model
	Wall Model
	Wall Model
	SGS Flux Formulation
	SGS Flux Formulation
	SGS Flux Formulation
	Numerical Scheme
	Numerical Scheme
	Linear System Solvers
	Solver Inputs
	Solver Inputs
	Solver Inputs
	Solver Inputs
	Solver Inputs
	Solver Inputs
	Solver Inputs
	Solver Inputs
	Solver Inputs
	Solver Inputs
	Solver Inputs
	Solver Outputs
	Solver Outputs
	Solver Outputs
	Solver Outputs
	Guidelines for Use
	Guidelines for Use
	Guidelines for Use
	Limitations
	Actuator Line Turbine Model
	Overview
	Theory
	Theory
	Theory
	Actuator Line Model Inputs
	Actuator Line Model Inputs
	Actuator Line Model Inputs
	Actuator Line Model Inputs
	Actuator Line Model Outputs
	Actuator Line Model Outputs
	Actuator Line Model Outputs
	Actuator Line Model Outputs
	Actuator Line Model Outputs
	Actuator Line Model Outputs
	Guidelines for Use
	Implementation
	Implementation
	Implementation
	FAST Coupling to OpenFOAM
	Coupling FAST to OpenFOAM
	Coupling FAST to OpenFOAM
	Implementation
	Implementation - fastPisoSolver
	Implementation - fastPisoSolver
	Implementation - fastPisoSolver.C
	Implementation – Make file
	FAST Input files: NREL 5MW Turbine
	FAST Actuator Line Model Inputs
	FAST Actuator Line Model Outputs
	Guidelines for Use
	Sample Output
	Sample Output
	Wind Plant Simulation
	Wind Plant Simulation
	Input
	Output
	Guidelines for Use
	Guidelines for Use
	Limitations/Known Issues
	Compiling The Codes
	Compiling the codes
	Example Cases:�Precursor Atmospheric Boundary Layer Simulation
	Atmospheric Boundary Layer
	The Process (see the “Allrun” script)
	Results
	Results
	Results
	Results
	Example Cases:�FAST-Couple Actuator Lines in Duct Flow
	Case Study: fastDuct
	Sample Run
	Sample Run
	Out-of-plane Blade Loadings and Power Output from FAST
	Out-of-plane Blade Loadings and Power Output from FAST
	Example Cases:�Wind Farm Simulation
	Wind Farm Simulation
	The Process (see the “Allrun” script)
	Results
	Results
	Some References
	Acknowledgements
	Help

