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Overview of SOWFA 

• Simulator for Offshore Wind Farm Applications 
• It is applicable to onshore too, but over next couple of years 

will contain offshore-specific tools 
• Currently, it is composed of CFD tools based on OpenFOAM 

coupled with a NREL’s FAST wind turbine structural/system 
dynamics model 

• It is meant to be modular and open-source so that others 
can put in their own “modules” 

• Open-source and freely available 
• It can be downloaded at: 

http://wind.nrel.gov/designcodes/simulators/sowfa/  

http://wind.nrel.gov/designcodes/simulators/sowfa/�
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Overview of SOWFA 

• Simulator for Offshore Wind Farm Applications 
• The overall vision is: 

 
 
 
 
 

• It will have a range of fidelity levels 
o Wakes computed from CFD or dynamic wake meandering model 
o Inflow turbulence computed from CFD or stochastic turbulence model 

SOWFA 
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Overview of SOWFA 

• In its current form, SOWFA is: 

“Precursor” atmospheric 
simulation (OpenFOAM) 

Save planes of data 
every N time steps 

Use saved precursor 
data as inflow 
boundary conditions 

Actuator line turbine 
aerodynamics models 
(coupled with NREL’s FAST 
turbine dynamics model) 

Initialize wind 
farm domain 
with precursor 
volume field 3 km 3 km 

1 km 

Wind farm simulation (OpenFOAM) 
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Atmospheric Boundary Layer Solver 
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Overview 

3 km 3 km 

1 km 
periodic periodic 

geostrophic 
wind 

rough lower surface 
with temperature flux 

capping inversion 
controls boundary  
layer height 

Boussinesq  
approximation for 
buoyancy effects Coriolis forces included 

ABLPisoSolver is a large-eddy simulation solver developed out of the 
buoyantBoussinesqPisoFoam that came with OpenFOAM-1.6.  It cannot be run in 
RANS mode.  It creates turbulent wind fields under a variety of atmospheric stability 
conditions. 

simulation time: 10000 –20000 s 
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Transport Equations 

I. time rate of change 
II. convection 
III. Coriolis force due to planetary rotation 
IV. density-normalized pressure gradient (deviation from hydrostatic and 

horizontal-mean gradient) 
V. horizontal-mean driving pressure gradient 
VI. SFS momentum fluxes (stresses) 
VII. buoyancy 
VIII. other density-normalized forces (from turbine actuator line model) 
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Momentum transport 

Notice there is no viscous term.  This is high Reynolds number flow.  Viscous effects only significant 
very near planetary surface.  Wall model will handle this (more later) 
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Transport Equations 

I. time rate of change 
II. convection 
III. SFS temperature fluxes 
 
 
 
1 provides a good explanation of atmospheric boundary layer physics.   
2 is a good outline of atmospheric boundary layer LES. 
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Potential temperature transport 

1 R. B. Stull.  An Introduction to Boundary Layer Meteorology.  Springer Science + Business Media B. V., 2009. 
2 C.-H. Moeng.  A Large-Eddy Simulation Model for the Study of Planetary Boundary Layer Turbulence.  Journal of the Atmospheric Sciences, 
Vol. 41, No. 13, 1984, pp. 2052–2062. 

Notice there is no molecular temperature conduction term.  This is high Reynolds number flow.  
Molecular effects only significant very near planetary surface.  Wall model will handle this (more later) 
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Potential Temperature 

• Temperature that a parcel of dry air would have if 
adiabatically brought from some pressure level to a 
reference pressure, usually 100kPA 

• Simplifies the study of atmospheric stability 

z 
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unstable 
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Buoyancy Force 

• This is an incompressible formulation, with constant density, 
so we need a way to account for buoyancy effects caused by 
variable density 

• Use the Boussinesq approximation 
• Buoyancy term is 
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locally neutral (air pushed into air  
of equal temperature): zero force 

locally unstable (warm air pushed up  
into cool air): positive force 
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Coriolis Force 

• Due to planetary rotation, there is an apparent force called 
Coriolis force 

• If +x is east, +y is north, and +z is up, then 
 
 
 
 
 

•       is the rotation rate vector at a location on the planetary 
surface,     is the planetary rotation rate (rad/s), and     is the 
lattitude 
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Sub-Filter Scale Model 
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Sub-Filter Scale Model 
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Sub-Filter Scale Model 

• Model implementation in ABLPisoSolver is done 
completely at cell-faces 
 

• Avoids interpolation to faces for taking divergence 
of stress 
 

• Provides a less dissipative effect near planetary 
surface 
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Wall Model 

• The cost of high-Re fully-resolved LES of wall-bounded 
flow scales strongly with Re. 

  
 
 
 

 
 

• The planetary surface is covered with roughness 
elements (dirt, rocks, vegetation) that would be 
extremely expensive to resolved with the grid. 

• It is inappropriate to apply no-slip at the surface 
• Instead apply a model for surface stress 

 1 U. Piomelli and E. Balaras, “Wall-Layer Models for Large-Eddy Simulations,” Annual Review of Fluid Mechanics, Vol. 34, pp. 349–374, 
2002. 

“The only economical way to perform LES of high Reynolds-number attached flow, 
therefore, is by computing the outer layer only.”  “Because the grid is too coarse to 
resolve the inner-layer structures, the effect of the wall layer must be modeled.  In 
particular, the momentum flux at the wall (i.e., the wall stress) cannot be evaluated 
by discrete differentiation because the grid cannot resolve either the sharp velocity 
gradients in the inner layer or the quasi-streamwise and hairpin vortices that transfer 
momentum in this region of the flow.  Therefore, some phenomelogical relation 
must be found to relate the wall stress to the outer-layer flow.”1 
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Wall Model 

• Surface stress model predicts total (viscous + SFS) 
stress at surface 

• Assumes that first cell centers away from surface lie 
within surface layer of the atmospheric boundary 
layer 

• So at the surface 
 
 
 
 

• The wall model models       and   
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Wall Model 

• ABLPisoSolver contains the wall models of  
o Schumann1 
o Moeng2 

• Moeng’s model 
 

1 U. Schumann.  Subgrid-Scale Model for Finite-Difference Simulations of Turbulent Flow in Plane Channels and Annuli.  Journal of 
Computational Physics, Vol. 18, 1975, pp. 76–404. 
2 C.-H. Moeng.  A Large-Eddy Simulation Model for the Study of Planetary Boundary Layer Turbulence.  Journal of the Atmospheric Sciences, 
Vol. 41, No. 13, 1984, pp. 2052–2062. 
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Wall Model 

• 1/2 denotes values at first cell centers away from surface 
 
 
 
 

• Angle brackets denote a horizontal average at a certain height 
• S  is the resolved velocity magnitude 

1/2 

surface 
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Wall Model 

• Friction velocity is defined as 
 
 
 

• It needs to be approximated.  Use rough wall log law 
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Wall Model 

• f (L) is an atmospheric stability-related function that is zero for neutral 
stability.  See Etling1 for more information   

• L is the Obuhkov length 
• z0 is the aerodynamic roughness height.  It depends on height, 

distribution, and shape of roughness elements on planetary surface.  See 
Stull2 for more information 
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1 D. Etling.  Modelling the Vertical ABL Structure, in Modelling of Atmospheric Flow Fields, D. P. Lalas and C. F. Ratto, editors, World 
Scientific, 1996, pp. 56–57. 
2 R. B. Stull.  An Introduction to Boundary Layer Meteorology.  Springer Science + Business Media B. V., 2009., p. 380. 

z0 (m) Terrain 
1×10-1 – 5×10-1 Many trees, hedges, few buildings 
3×10-3 – 2×10-2 Level grass plains 
1×10-4 – 1×10-3 Large expanses of water 
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Wall Model 

• A similar approach is taken to model the total temperature 
flux at the surface1 
 
 
 
 
 

• Total average temperature flux, Qs, is specified, and the wall 
model creates the fluctuating temperature flux 

1 C.-H. Moeng.  A Large-Eddy Simulation Model for the Study of Planetary Boundary Layer Turbulence.  Journal of the Atmospheric Sciences, 
Vol. 41, No. 13, 1984, pp. 2052–2062. 
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SGS Flux Formulation 

• ABLPisoSolver does not use “standard” 
OpenFOAM SGS flux divergence form 

• Standard:  
o Compute SGS viscosity at cell centers, interpolate to faces  
o Calls the function divDevReff() 

return  
( 
 - fvm::laplacian(nuEff(), U)  
 - fvc::div(nuEff()*dev(T(fvc::grad(U)))) 
); 
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SGS Flux Formulation 

• ABLPisoSolver does not use “standard” 
OpenFOAM SGS flux divergence form 

• Our way: 
o Computes SGS viscosity on cell faces, not cell centers.  Less dissipative 

near wall solution 
o Explicitly computes momentum flux on boundaries with wall stress 

model 
o Explicitly compute SGS stress at interior 
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SGS Flux Formulation 

• ABLPisoSolver does not use “standard” 
OpenFOAM SGS flux divergence form 

• Our way: 
o Limitations 

– It’s explicit, but we have not been limited by that 
– Can not use SGS models that come with OpenFOAM 

• We desire to better understand why our way 
is less dissipative (favorable) near wall 

• Find a way to go to “standard” formulation, 
but maintain the low dissipation 
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Numerical Scheme 

• Like most other OpenFOAM solvers, ABLPisoSolver uses the 
PISO1 (Pressure Implicit Splitting Operation) to “implicitly” 
solve the momentum and pressure equation 

o I say “implicitly” because the SFS stress, temperature, and buoyancy 
are not solved implicitly.  They are based on previous time step and 
solved sequentially 

o Predictor-Corrector approach 
 

1 R. I. Issa.  Solution of the Implicitly Discretized Fluid Flow Equations by Operator-Splitting.  Journal of Computational Physics, Vol. 62, 1985, 
pp. 40–65. 
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Numerical Scheme 

• Finite-volume formulation 
o Linear interpolate of cell-center values to cell faces when needed 
o Equivalent to second-order central differencing 
o Rhie-Chow1-like flux interpolation is used to avoid pressure-velocity 

decoupling 

 

1 C. M. Rhie and W. L. Chow.  Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation.  AIAA Journal, Vol. 21, 
No. 11, 1983, pp. 1552–1532. 
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Linear System Solvers 

• Velocity and Temperature 
o Biconjugate Gradient 
o Diagonal incomplete LU matrix preconditioner 

• Pressure 
o Preconditioned Conjugate Gradient 
o Diagonal incomplete Cholesky matrix preconditioner 
           OR 
o Geometric agglomerated algebraic multigrid solver 
o Diagonal incomplete Cholesky smoother 

 



28 

Solver Inputs 

• “0” directory 
o U 
o T 
o pd 

• “system” directory 
o controlDict 
o fvSchemes 
o fvSolution 
o decomposeParDict 

• “constant” directory 
o “polyMesh” directory 
o ABLProperties 
o transportProperties 
o g 
o Omega 
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Solver Inputs 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
 
 
 
// Is average wind at a specified height driven to a specified velocity? 
driveWindOn               true; 
 
// Desired horizontally-averaged wind speed at a certain height (m/s) 
UWindSpeed                UWindSpeed [0 1 -1 0 0 0 0] 9.0; 
 
// Desired horizontally-averaged wind direction at a height (degrees) 
UWindDir                  225.0; 
 
// Height at which horizontally-averaged wind vector is specified (m) 
hWind                     hWind [0 1 0 0 0 0 0] 90.0; 
 
// Relaxation factor on the pressure gradient control 
alpha                     0.9; 
 
// Name of the lower boundary 
lowerBoundaryName         "bottom"; 
 
// Name of the upper boundary 
upperBoundaryName         "top"; 
 
// Are statistics to be gathered? 
statisticsOn              true; 
 
// At which frequency are statistics to be taken and written? 
statisticsFrequency       5; 
 
// ************************************************************************* // 

drive wind to specified velocity at specified height 

specified wind direction (direction blowing from) 

specified wind speed 

specified wind height 

relaxation factor on driving pressure gradient update 

boundary patch name corresponding to lower surface 

statistics gathering frequency (every n time steps) 

gather statistics about boundary layer? 

boundary patch name corresponding to upper surface 

constant/ABLProperties 
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Solver Inputs 

constant/ABLProperties 

N 
0° 

W 
270° 

E 
90° 

S 
180° 

Wind from 45° 

Wind from 270° 
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Solver Inputs 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
transportModel Newtonian; 
 
// Molecular viscosity (m^2/s^2) 
nu                  nu [0 2 -1 0 0 0 0] 0.0; 
 
// Reference temperature (K) 
TRef                TRef [0 0 0 1 0 0 0] 300; 
 
// LES SGS model (options are "standardSmagorinsky") 
LESModel           "standardSmagorinsky"; 
 
// Smagorinsky Constant 
Cs                  0.135; 
 
// LES filter width scalar 
deltaLESCoeff       1.0; 
 
// von Karman constant 
kappa               0.40; 
 
// Constants for Monin-Obuhkov universal constants 
betaM               16.0; 
gammM               5.0; 
 
// Roughness height (m) 
z0                  z0 [0 1 0 0 0 0 0] 0.016; 
 
// Surface temperature flux (K-m/s) 
q0                  q0 [0 1 -1 1 0 0 0] 0.0; 
 
// Surface stress model (options are "Schummann“ or "Moeng") 
surfaceStressModel "Moeng"; 
 
 
// ************************************************************************* // 

solver reads this molecular viscosity, but does not use 
it (need to fix this in the future) 

SFS model (currently limited to standard Smagorinsky) 

reference temperature (inverse should correspond to 
fluid expansion ratio) 

Smagorinsky model constant 

LES filter width is cube root of cell volume times this 
coefficient 
von Karman constant 

mean surface temperature flux 

aerodynamic roughness height 

used for calculating friction velocity in non-neutral flow 

constant/transportProperties 

surface stress model (wall model) 
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Solver Inputs 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
dimensions      [0 1 -2 0 0 0 0]; 
value           ( 0.0 0.0 -9.81 ); 
 
 
// ************************************************************************* // 

value of acceleration due to gravity 

constant/g 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
dimensions      [0 0 -1 0 0 0 0]; 
value           (0.0 5.1422E-5 5.1422E-5); 
 
 
// ************************************************************************* // 

Remember, this rotation rate is: 

constant/Omega 
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Solver Inputs 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
application       ABLPisoSolver; 
 
libs              ("libuserfiniteVolume.so"); 
 
startFrom         startTime; 
 
startTime         0.0; 
 
stopAt            endTime; 
 
endTime           10000.0; 
 
deltaT            0.1; 
 
writeControl      adjustableRunTime; 
 
writeInterval     2000.0; 
 
purgeWrite        0; 
 
writeFormat       binary; 
 
writePrecision    12; 
 
writeCompression  uncompressed; 
 
timeFormat        general; 
 
timePrecision     6; 
 
runTimeModifiable yes; 
 
adjustTimeStep    yes; 
 
maxCo             0.75; 
 
maxDeltaT         25.0; 
 
// ************************************************************************* // 

Need to use the library to use custom 
buoyantBoussinesqMod boundary condition for 
pressure 

system/controlDict 

run at a constant Courant number (adjust time step) 
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Solver Inputs 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
ddtSchemes 
{ 
    default                        CrankNicholson 1.0; 
} 
 
gradSchemes 
{ 
    default                        Gauss linear; 
} 
 
divSchemes 
{ 
    default                        Gauss linear; 
} 
 
laplacianSchemes 
{ 
    default                        Gauss linear uncorrected; 
} 
 
interpolationSchemes 
{ 
    default                        linear; 
} 
 
snGradSchemes 
{ 
    default                        uncorrected; 
} 
 
fluxRequired 
{ 
    default                        no; 
    pd                               ; 
} 
// ************************************************************************* // 
 

we use Crank Nicolson time marching 

system/fvSchemes 

all interpolation to faces is linear (second-order 
central) because when doing LES, we do not want 
dissipation associated with upwind schemes 

Typical canonical ABL meshes are completely 
orthogonal, so no non-orthogonal correction is 
needed 

d(pd)/dx at faces is needed to update velocity fluxes 
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Solver Inputs 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
    pd 
    { 
        solver          GAMG; 
        tolerance       1e-6; 
        relTol          0.01; 
        smoother        DIC; 
        nPreSweeps      0; 
        nPostSweeps     2; 
        nFinestSweeps   2; 
        cacheAgglomeration true; 
        nCellsInCoarsestLevel 100; 
        agglomerator    faceAreaPair; 
        mergeLevels     2; 
    } 
 
    pdFinal 
    { 
        solver          GAMG; 
        tolerance       1e-8; 
        relTol          0.0; 
        smoother        DIC; 
        nPreSweeps      0; 
        nPostSweeps     2; 
        nFinestSweeps   2; 
        cacheAgglomeration true; 
        nCellsInCoarsestLevel 100; 
        agglomerator    faceAreaPair; 
        mergeLevels     2; 
    } 
 
    U 
    { 
        solver          PBiCG; 
        preconditioner  DILU; 
        tolerance       1e-6; 
        relTol          0;  
    } 
 
    T 
    { 
        solver          PBiCG; 
        preconditioner  DILU; 
        tolerance       1e-6; 
        relTol          0; 
    } 

Typical solver settings 

system/fvSolution 

PCG is generally fine for U and T on all sizes of grids 

GAMG is generally used for pressure solve 
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Solver Inputs 

 
 
 
options 
{ 
    nCorrectors              3; 
    nNonOrthogonalCorrectors 0; 
 
 
 
    pdRefOn                  true; 
    pdRefCell                55; 
    pdRefValue               0; 
 
 
 
    tempEqnOn                true;  
} 
// ************************************************************************* // 

typical solver settings (continued) 

system/fvSolution 

1 PISO predictor followed by 3 correctors.  No non-
orthogonal correction on typical orthogonal grids 

gradient boundary conditions are used on pressure, 
so pressure level needs to be set at some cell to 
“tack” down pressure level 

turn temperature equation on or off 
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Solver Inputs 

• Velocity 
o Given a logarithmic base profile 
o Non-random, divergence-free perturbations added near surface to 

cause turbulence to quickly happen (similar to method used by 
DeVillier’s in channel flow1). 

• Temperature 
o Constant temperature (300K) up to some height, then temperature 

increases 
o This creates a capping inversion that caps the boundary layer and 

slows boundary layer vertical growth 
• Pressure variable 

o Initialized to zero 
• Initial conditions set using “setABLFields” utility (find in 

precursorABL tutorial).  Could use something like “funkySetFields” 

Initial conditions 

1 De Villiers, E., “The Potential of Large Eddy Simulation for the Modeling of Wall Bounded Flows”, PhD Thesis, Imperial College, London, 
2006. 
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Solver Inputs 

(K) θ

z (m) 
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Solver Outputs 

• Solution files (inside time directories) 
o U, pd, T, Uprime, Tprime, nuLES*, kappaLES* 
o * means defined on cell faces instead of cell centers 
 

• “averaging” directory 
o Horizontally-averaged profiles of quantities like 

velocity, temperature, velocity variances, velocity 
fluxes, temperature fluxes, third-order moments 

o Histories of friction velocity, boundary layer depth, 
and more 
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Solver Outputs 

• “averaging” file structure 
o Within averaging directory are time directories corresponding to 

run start times.  If you start a run at 0, there will be a “0” 
directory.  If you restart a run at 1000, there will also be a 
“1000” directory. 

o Most files are structured as follows where each line represents a 
different time step, and starting at the third column, each 
column represents a horizontally-averaged value at a 
progressively greater height on the grid 
 
 
 

o Heights corresponding the value0 through valueJ are in either 
the  hLevelsCell or hLevelsFace file 

– hLevelsCell are cell-centered heights 
– hLevelsFace are heights of horizontally-situated faces 

 

time0  dt0  value0  value1  value2 … valueJ 
time1  dt1  value0  value1  value2 … valueJ 
                  … 
timeN  dtN  value0  value1  value2 … valueJ 
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Solver Outputs 

• “averaging” file structure 
 
 

Cell-center quantities Description 
T_mean 

U_mean, V_mean, W_mean 

uu_mean, vv_mean, ww_mean 

uv_mean, uw_mean, vw_mean 

wuu_mean, wvv_mean, www_mean 

wuv_mean, wuw_mean, wvw_mean 

Tu_mean, Tv_mean, Tw_mean 

θ

u v w

''uu ''vv ''ww

''vu ''wu ''wv

''' uuw ''' vvw ''' www

''' vuw ''' wuw ''' wvw

''uθ ''vθ ''wθ
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Solver Outputs 

• “averaging” file structure 
 
 

Cell-face quantities Description 
R11_mean, R22_mean, R33_mean 

R12_mean, R13_mean, R23_mean 

q1_mean, q2_mean, q3_mean 

phiM           Non-dimensional velocity shear 

D
11τ D

22τ D
33τ

D
12τ D

13τ D
23τ

1q 2q 3q

mφ

Global quantities Description 
ReLES           LES Reynolds number1 

scriptR           Near surface ratio of resolved to      
          subgrid scale stress1 

uStar           Friction velocity 

zi           Boundary layer depth 

LESRe

ℜ

*u

iz

1 J. Brasseur and T. Wei.  Designing Large-Eddy Simulation of the Turbulent Boundary Layer to Capture Law-of-the-Wall Scaling, Physics of 
Fluids, Vol. 22, No. 2, 2010. 
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Guidelines for Use 

• +x must be east, +y must be north, +z must be up 
• Domain must be large enough to resolve large 

structures 
o At least 3km in horizontal and 1km in vertical for neutral 

and lightly unstable cases 
o At least 5km in horizontal and 2km in vertical for 

moderately to strongly convective cases 
– The cases will resolve large convection cells or rolls 

• Must use adequate vertical grid resolution, small 
enough cell aspect ratio, and proper Smagorinsky 
constant to recover law-of-the-wall scaling 



44 

Guidelines for Use 

• Law-of-the-wall scaling 
o This follows the work of Brasseur and Wei1 

o The problem: 

 

1 J. Brasseur and T. Wei.  Designing Large-Eddy Simulation of the Turbulent Boundary Layer to Capture Law-of-the-Wall Scaling, Physics of 
Fluids, Vol. 22, No. 2, 2010. 

Log-law mismatch Improved log-law agreement 



45 

Guidelines for Use 

• Law-of-the-wall scaling 
o This follows the work of Brasseur and Wei1 

o The problem: 

 

1 J. Brasseur and T. Wei.  Designing Large-Eddy Simulation of the Turbulent Boundary Layer to Capture Law-of-the-Wall Scaling, Physics of 
Fluids, Vol. 22, No. 2, 2010. 

overshoot Improved log-law agreement 

z
U

u
z

m ∂
∂

=
*

κφ
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Limitations 

• Think of this as a beta version 
o We need to perform more validation, you can help 

 
• Neutral or unstable flow only 

o Needs a more sophisticated SFS model to compute stable flow 
o We are working on implementing a dynamic Smagorinsky model and/or 

finding way back to OpenFOAM standard stress formulation to use SGS models 
that come with OpenFOAM 
 

• Only works on flat terrain 
o Will add in irregular terrain capability later this year 
 

• Currently set up for homogeneous surface roughness and heating 
o We are thinking about how to locally apply wall model 
 

• Not tested on truly unstructured meshes 
o We have designed the solver with hexahedral cells of uniform height at the 

surface in mind 
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Actuator Line Turbine Model 
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Overview 

• Resolving turbine blade 
geometry with high-Re LES is 
infeasible 

• An actuator approach does 
not require a very fine grid 
around turbine blades 

• Creates wake, tip, root, and 
bound vortices 

• Does not create blade 
boundary layer turbulence 

• Depends upon airfoil look-up 
tables 
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Theory 

• Method of Sørensen and Shen1 

• Blades discretized into spanwise 
sections of constant airfoil, chord, 
twist, oncoming wind 

• Airfoil lookup tables used to 
calculate lift and drag at each 
actuator section 

• Force on flow is equal and opposite 
to blade force 

• Force is normalized and projected 
back to flow 

 
 

1 Sørensen, J. N. and Shen, W. Z., “Numerical Modeling of Wind Turbine Wakes”, Journal of Fluids Engineering 124, 2002, pp. 393-399. 

We follow the methodology of Sørensen and Shen1 
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Theory 

• Force Projection 
o How do you take force calculated at actuator line points and project it 

onto the CFD grid as a body force? 
o How do you smooth the force to avoid numerical oscillation? 
o Sørensen and Shen use a Gaussian projection 

 
 
 

o        is the actuator element force 
o        is the force field projected as a body force onto CFD grid 
o r  is distance between CFD cell center and actuator point 
o      controls Gaussian width.   
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Theory 

• Projection Width 
o Troldborg1 recommends                    where         is the grid cell length 

near actuator line 
o We found this to be the minimum in order to maintain an oscillation-

free solution using central differences 
o We think     should be tied to some physical blade length, like chord, 

but have not come up with a definitive guideline. 
o See the AIAA paper by Martínez et al.2 

 

2/ =∆xε x∆

1 Troldborg, N., “Actuator Line Modeling of Wind Turbine Wakes”, PhD Thesis, Technical University of Denmark, Lyngby, Denmark, 2008. 
2 Martinez, L. A., Leonardi, S., Churchfield, M. J., Moriarty, P. J., “A Comparison of Actuator Disk and Actuator Line Wind Turbine Models and 
Best Practices for Their Use”, AIAA Paper 2012-900, Jan. 2012. 

ε
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Actuator Line Model Inputs 

globalProperties 
{ 
    outputControl       "timeStep"; 
    outputInterval       1; 
} 
 
turbine1 
{ 
    turbineType         "NREL5MWRef"; 
    baseLocation        (1500.0 1500.0 0.0); 
    numBladePoints      40; 
    pointDistType       "uniform"; 
    pointInterpType     "linear"; 
    bladeUpdateType     "oldPosition"; 
    epsilon              5.0; 
    tipRootLossCorrType "none"; 
    rotationDir         "cw"; 
    Azimuth              232.0105; 
    RotSpeed             9.0; 
    Pitch                0; 
    NacYaw              225.0; 
    fluidDensity        1.23; 
} 
 
turbine2 
{ 
    turbineType         “GE1.5SLE";  
    … 

 

constant/turbineArrayProperties 
 
 
Either “timeStep” or “runTime” 
Output interval in timesteps or seconds 
 
 
List turbines in the following blocks 
 
Type of turbine 
Location of the center of the tower base 
Number of actuator elements along a blade 
Currently, elements are uniformly distributed 
Type of interpolation of velocity to actuator point, “linear” or “cellCenter” 
Use velocity at old or new blade position 
Gaussian projection width 
Options are “none” or “Glauert” 
Rotor rotation sense as viewed from upstream 
Initial rotor azimuth angle 
Initial rotor speed in RPM 
Initial blade collective pitch 
Initial nacelle yaw position 
Density use to compute forces, torque, and power 
 
 
List as many other turbines of any kind as you desire 
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Actuator Line Model Inputs 

 
NumBl                   3; 
TipRad                 63.0; 
… 
TorqueControllerType   “fiveRegion"; 
PitchControllerType    “none” 
YawControllerType      "none"; 
 
TorqueControllerParams 
{ 
    CutInGenSpeed           670.0; 
    RatedGenSpeed          1173.7; 
    Region2StartGenSpeed    871.0; 
    Region2EndGenSpeed     1161.963; 
    CutInGenTorque            0.0; 
    RatedGenTorque           43.09355E3; 
    RateLimitGenTorque       15.0E3; 
    KGen                      2.55764E-2; 
    TorqueControllerRelax     1.0; 
} 
 
PitchControllerParams 
{ 
    PitchControlStartPitch    0.0; 
    PitchControlEndPitch      7.6; 
    PitchControlStartSpeed    15.77; 
    PitchControlEndSpeed      16.0; 
    RateLimitPitch             4.5; 
} 
 

Closely follows NREL FAST input file, so see FAST manual1 

constant/turbineProperties/”turbineName” 

Torque control parameters (controls rotor speed below Region 3) 

Simple linear pitch control based on rotor speed (not realistic, though!)  Just 
linearly varies pitch between two specified rotor speeds with a maximum rate of 
change limit. 

1 Jonkman, J. and Buhl, M., FAST User’s Guide, NREL/EL-500-38230, NREL technical report, 2005.  Accessible at: 
http://wind.nrel.gov/designcodes/simulators/fast/FAST.pdf 
2 Jonkman, J., Butterfield, S., Musial, W., and Scott, G., Definition of a 5-MW Reference Wind Turbine for Offshore System Development, NREL/TP-
500-38060, Feb. 2009. 

A file is needed for each type turbine in the array 

Either uses fixed speed (“none”) or like NREL 5MW2 (“fiveRegion”) 

Generator speed at cut-in wind speed (RPM) 
Generator speed at rated wind speed (RPM) 
Generator speed at the start of Region 2 (the end of Region 1-1/2) (RPM) 
Generator speed at the end of Region 2 (the beginning of Region 2-1/2) (RPM) 
Generator control torque at cut-in wind speed (N-m) 
Generator control torque at rated wind speed (N-m) 
Maximum allowable rate of generator control torque change (N-m/s) 
Region 2 generator control constant (N-m/RPM) - torque = K*Omega^2 
Relaxation factor on generator control torque update each time step. 

http://wind.nrel.gov/designcodes/simulators/fast/FAST.pdf�
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Actuator Line Model Inputs 

Airfoils 
( 
    "Cylinder1"  
    "Cylinder2"  
    …   
    "NACA64_A17" 
); 
 
BladeData 
( 
//  radius(m)   c(m)     twist(deg) airfoil  
    (2.8667     3.542    13.308     0) 
    (5.6        3.854    13.308     0) 
    … 
    (58.9       2.086    0.37       7) 
    (61.6333    1.419    0.106      7) 
); 

constant/turbineProperties/”turbineName” 
List of airfoils used to define blade 

Blade properties vs. radius.  Note that airfoil 0 corresponds to first 
airfoil in “Airfoils” list, and so on 
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Actuator Line Model Inputs 

 
airfoildata 
( 
//   alpha   C_l    C_d 
    (-180    0      0.0185) 
    (-175    0.394  0.0332) 
    (-170    0.788  0.0945) 
    (-160    0.67   0.2809) 
    (-155    0.749  0.3932) 
    (-150    0.797  0.5112) 
    (-145    0.818  0.6309) 
    … 
    (-0.5    0.458  0.0057) 
    ( 0      0.521  0.0057) 
    ( 0.5    0.583  0.0057) 
    ( 1      0.645  0.0058) 
    ( 1.5    0.706  0.0058) 
    ( 2      0.768  0.0059) 
    … 
    ( 170   -0.788  0.0969) 
    ( 175   -0.394  0.0334) 
    ( 180    0      0.0185) 
); 
 

An airfoil file is needed for every different airfoil 
used by each distinct turbine in the array 
 

This is simply a list of coefficient of lift and drag 
versus angle of attack 

constant/airfoilProperties/”airfoilName” 
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Actuator Line Model Outputs 

• Solution files (inside time directories) 
o bodyForce: body force projected onto flow field 

 

• “turbineOutput” directory 
o Outputs various turbine information such as power, 

torque, rotor speed, etc. 
o Outputs information at each blade point such as angle of 

attack, velocity magnitude, lift, drag, etc. 
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Actuator Line Model Outputs 

• “turbineOutput” file structure 
o Within turbineOutput directory are time directories 

corresponding to run start times.  If you start a run at 0, 
there will be a “0” directory.  If you restart a run at 1000, 
there will also be a “1000” directory. 

– Within the specific time directories are a files for global turbine 
data files for quantities like power, torque, rotor speed, etc. 

– Also there are files for blade local quantities like lift, drag, angle of 
attack, etc. vs. span. 

 



58 

Actuator Line Model Outputs 

• Global quantity file structure 
 
 
 
 

 

turbine0 time0  dt0  value 
turbine1 time0  dt0  value 
… 
turbineM time1  dt0  value 
 
turbine0 time1  dt1  value 
turbine1 time1  dt1  value 
… 
turbineM time1  dt1  value 
 
 … 
 
turbine0 timeN  dtN  value 
turbine1 timeN  dtN  value 
… 
turbineM timeN  dtN  value 
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Actuator Line Model Outputs 

• Blade radius dependent file structure 
turbine0 blade0 time0  dt0  value0  value1  value2 … valueJ 
turbine0 blade1 time0  dt0  value0  value1  value2 … valueJ 
turbine0 blade2 time0  dt0  value0  value1  value2 … valueJ 
 

turbine1 blade0 time0  dt0  value0  value1  value2 … valueJ 
turbine1 blade1 time0  dt0  value0  value1  value2 … valueJ 
turbine1 blade2 time0  dt0  value0  value1  value2 … valueJ 
  … 
 

turbineM blade0 time0  dt0  value0  value1  value2 … valueJ 
turbineM blade1 time0  dt0  value0  value1  value2 … valueJ 
turbineM blade2 time0  dt0  value0  value1  value2 … valueJ 
 

  … 
 
 

turbine0 blade0 timeN  dtN  value0  value1  value2 … valueJ 
turbine0 blade1 timeN  dtN  value0  value1  value2 … valueJ 
turbine0 blade2 timeN  dtN  value0  value1  value2 … valueJ 
 

turbine1 blade0 timeN  dtN  value0  value1  value2 … valueJ 
turbine1 blade1 timeN  dtN  value0  value1  value2 … valueJ 
turbine1 blade2 timeN  dtN  value0  value1  value2 … valueJ 
  … 
 

turbineM blade0 timeN  dtN  value0  value1  value2 … valueJ 
turbineM blade1 timeN  dtN  value0  value1  value2 … valueJ 
turbineM blade2 timeN  dtN  value0  value1  value2 … valueJ 
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Actuator Line Model Outputs 

Global turbine quantities Description 
powerRotor Rotor power/density (W) 

rotSpeed Rotor speed (rpm) 

thrust Thrust (N) 

torqueRotor Rotor torque (N-m) 

torqueGen Generator torque (N-m) 

azimuth Rotor azimuth angle (degrees) 

nacYaw Nacelle yaw angle (degrees) 

pitch Blade collective pitch (degrees) 
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Actuator Line Model Outputs 

Blade Local quantities Description 
alpha Angle of attack (degrees) 

axialForce Force along rotor shaft axis (N) 

Cd Coefficient of drag 

Cl Coefficient of lift 

drag Drag force (N) 

lift Lift force (N) 

tangentialForce Force in rotor rotation tangential direction (N) 

Vaxial Component of velocity along rotor shaft axis (m/s) 

Vradial Component of velocity along blade radius (m/s) 

Vtangential Component of velocity in rotation tangential direction (m/s) 

x, y, z Actuator point position in space (m) 
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Guidelines for Use 

• +x must be east, +y must be north, +z must be up 
• Use at least 20 CFD grid cells across the rotor 

diameter 
• Use at least 40 CFD grid cells across the rotor if you 

want to well resolve tip/root vortices 
• We are currently performing a study to better 

understand power production dependence on 
surrounding grid resolution, epsilon, number of 
actuator points, and use of the tip loss correction 

• Set epsilon parameter to at least twice the local grid 
cell length, but somewhere around the mean blade 
chord length 
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Implementation 

• Turbine model implemented as a class 
o  “horizontalAxisWindTurbinesALM” 
o See src/turbineModels/horizontalAxisWindTuribinesALM 

• Any solver can be modified to contain an object of 
the class 

• That object is the entire turbine array 
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Implementation 

• Modifying pisoFoam to include turbine class 
o Add this to createFields.H to declare object of turbine class 

 
 
 

o Add this to the includes part of the solver code 
 

o Add this line to solver code momentum equation to apply forces 
 
 
 
 

o Add this line at the beginning or end of the time loop to advance the 
turbine one time step 

    // Create an object of the horizontalWindTurbineArray class if there 
    // is to be a turbine array 
    // 
    turbineModels::horizontalAxisWindTurbinesALM turbines(U); 

fvVectorMatrix UEqn 
( 
     fvm::ddt(U) 
   + fvm::div(phi, U) 
   + turbulence->divDevReff(U)         
   - turbines.force() 
); 

turbines.update(); 

#include “horizontalAxisWindTurbinesALM.H” 
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Implementation 

• Make/options file needs to be modified 

 EXE_INC = \ 
    -I$(LIB_SRC)/turbulenceModels/incompressible/turbulenceModel \ 
    -I$(LIB_SRC)/transportModels \ 
    -I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel \ 
    -I$(LIB_SRC)/finiteVolume/lnInclude \ 
    -I$(WM_PROJECT_USER_DIR)/src/turbineModels/lnInclude 
 
EXE_LIBS = \ 
    -L$(FOAM_USER_LIBBIN) \ 
    -lincompressibleTurbulenceModel \ 
    -lincompressibleRASModels \ 
    -lincompressibleLESModels \ 
    -lincompressibleTransportModels \ 
    -lfiniteVolume \ 
    -lmeshTools \ 
    -llduSolvers \ 
    -luserTurbineModels 
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FAST Coupling to OpenFOAM 
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Coupling FAST to OpenFOAM 

• NREL’s FAST1 (Fatigue, Aerodynamics, Stress, and 
Turbulence) tool is a model for wind turbine structural, 
aero, and system dynamics 

• Its aerodynamics part is through blade element 
momentum theory (BEM) 

• Here, we coupled FAST to the actuator line model 
• The “momentum” part of BEM is replaced by CFD 

o CFD feeds FAST inflow information at blade elements 
o Aerodynamic forces computed by look-up table (“blade 

element” theory--just like normal actuator line) 
o Turbine structural and system response computed 
o Aerodynamic forces fed back to CFD 

1 Jonkman, J. and Buhl, M., FAST User’s Guide, NREL/EL-500-38230, NREL technical report, 2005.  Accessible at: 
http://wind.nrel.gov/designcodes/simulators/fast/FAST.pdf 
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Coupling FAST to OpenFOAM 

Do while (t < tmax) 
 
    call FLOW_Solver 
   
    call openFOAM2FAST 
 
    call FAST 
 
    call Fast2OpenFOAM 
 
End do 

OpenFOAM FAST   
(NREL aero-elastic code) 

velocity 

Compute structural 
response and blade 
rotation 

aeroforces w/ blade coord. 
in actuator line representation 

Multiple-Turbine 
capability 

Turbulence is different 
than a TurbSim result! 
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Implementation 

• Similar to standard actuator line 
• Turbine model implemented as a class 

o “horizontalAxisWindTurbinesFAST” 
o See src/fastturb/horizontalAxisWindTuribinesFAST 

• Any solver can be modified to contain an object of 
the class 

• That object is the entire turbine array 
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Implementation  - fastPisoSolver 
 
    … 
 
    label pRefCell = 0; 
    scalar pRefValue = 0.0; 
    setRefCell(p, mesh.solutionDict().subDict("PISO"), pRefCell, pRefValue); 
 
    singlePhaseTransportModel laminarTransport(U, phi); 
 
    autoPtr<incompressible::turbulenceModel> turbulence 
    ( 
        incompressible::turbulenceModel::New(U, phi, laminarTransport) 
    ); 
 
    turbineModels::horizontalAxisWindTurbinesFAST turbfast(U); 
  

-Create an object of the horizontalWindTurbinesFAST class if there is to be a 
turbine array 

 
•Add “createFields.H” file to the includes part of the solver code (pisoFoam.C) 
 
int main(int argc, char *argv[]) 
{ 
    #include "setRootCase.H" 
    #include "createTime.H" 
    #include "createMesh.H" 
    #include "createFields.H" 
    #include "initContinuityErrs.H” 

createFields.H 
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Implementation  - fastPisoSolver 
… 
#include "horizontalAxisWindTurbinesFAST.H“ 
… 
 
extern "C"  
{ 
  void fastinit_( float& , int& ); 
  void fastread_( float*, float*, float*); 
  void fastrun_( ); 
  void fastgetbldpos_( float*, float*, float*); 
  void fastgetbldforce_(float*, float*, float*); 
  void fastend_( ); 
} 
 
int main(int argc, char *argv[]) 
{ 
     …  #include "createFields.H“  … 
 
    // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
    // initialize FAST 
    Info << "Number of Turbs: " << turbfast.turbNum << endl; 
    float tstep = runTime.deltaT().value(); 
    for(int turbNo=0; turbNo<turbfast.turbNum; turbNo++) 
    { 
      if(Pstream::myProcNo() == turbNo) 
      { 
        fastinit_(tstep, turbNo); 
        fastgetbldpos_(turbfast.bldptx[turbNo], turbfast.bldpty[turbNo], turbfast.bldptz[turbNo]); 
      } 
      turbfast.getBldPos(turbNo); 
    } 
 
    … 

Declare wrapper functions written Fortran90 
 
-Initialize FAST 
-Read wind information from OpenFOAM 
-Run FAST 
-transfer updated blade element positions to OpenFOAM 
-transfer updated aerodynamic forces from blade elements to OpenFOAM 
-Terminate FAST 

FAST initialization 
-Get number of blades 
-Get time-step from OpenFOAM => FAST time step 
-Loop through each turbines 
-Turbine  ID = MPI_RANK (CPU #) 
 
-For given CPU #, initialize FAST 
 
 
-Get current blade elem. pos. 
 
-Transfer blade elem. Pos. to OpenFOAM  

pisoFoam.C 
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Implementation  - fastPisoSolver.C 
Continued from last slide… 
 
    // Pressure-velocity PISO corrector 
    { 
 
      for(int turbNo=0; turbNo<turbfast.turbNum; turbNo++) 
      { 
        turbfast.getWndVec(turbNo); 
        if(Pstream::myProcNo() == turbNo)  
        { 
          fastread_(turbfast.uin[turbNo], turbfast.vin[turbNo], turbfast.win[turbNo]); 
          fastrun_(); 
          fastgetbldpos_(turbfast.bldptx[turbNo], turbfast.bldpty[turbNo], turbfast.bldptz[turbNo]);  
          fastgetbldforce_(turbfast.bldfx[turbNo], turbfast.bldfy[turbNo], turbfast.bldfz[turbNo]); 
        } 
        turbfast.computeBodyForce(turbNo); 
      } 
 
      // Momentum predictor 
      fvVectorMatrix UEqn 
      ( 
        fvm::ddt(U) 
           + fvm::div(phi, U) 
           + turbulence->divDevReff(U) - turbfast.force()  
      ); 
 
     …   
       fastend_(); 
     …  

-Loop through turbines 
 
-get wind data for specified turbine 
 
 
 
-transfer OpenFOAM wind data to FAST 
-run FAST 
-pass updated blade elem. pos. to OpenFOAM 
-pass updated aerodynmic force to OpenFOAM 
 
-project the aerodynamic force into the OpenFOAM 
computational domain 
 
 
 
 
 
 
 
-added the aerodynamic force from FAST as a bodyforce 
term in momentum eq. 
 
 
-terminate FAST (loops through all the turbines) 

pisoFoam.C 
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Implementation – Make file 

• Make/options file needs to be modified 

 EXE_INC = \ 
    -I$(LIB_SRC)/turbulenceModels/incompressible/turbulenceModel \ 
    -I$(LIB_SRC)/transportModels \ 
    -I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel \ 
    -I$(LIB_SRC)/finiteVolume/lnInclude \ 
    -I$(WM_PROJECT_USER_DIR)/src/fastturb/lnInclude 
 
EXE_LIBS 
    -Lfast/bin \ 
    -L$(FOAM_USER_LIBBIN) \ 
    -lincompressibleRASModels \ 
    -lincompressibleLESModels \ 
    -lincompressibleTransportModels \ 
    -lfiniteVolume \ 
    -lmeshTools \ 
    -luserfastturb \ 
    -lgfortran \ 
    -lfast 
       

../fastPisoSolver/ 
     /fast/bin/ 
              libfast.a      
     /Make/ 
              files 
              options 
  createFields.H 
  pisoFoam.C 

FAST compiled 
into static library 



74 

FAST Input files: NREL 5MW Turbine 
/caseStudyDir/ 
 
Required files are: 
 
 

Primary.fst 
specifies configurations for initial conditions, controls, turbine geometry 
and mass, drive train, output file formats, etc… 
 
 

USERWIND.wnd 
file used to invoke reading in external flow data 
 
 

NRELOffshrBsline5MW_AeroDyn.ipt 
AeroDyn input for air specification, blade geometry, airfoil data 
(coefficients for lift/drag table are included in /caseStudyDir/AeroData/) 
 
 

NRELOffshrBsline5MW_Blade.ipt 
Specifies blade properties: stiffness, mode shapes etc.. 
 
 

NRELOffshrBsline5MW_Tower_Onshore.ipt 
ditto for Tower properties 
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FAST Actuator Line Model Inputs 

turbine0 
{ 
    refx              200.0;         - x location of tower base 
    refy                0.0;         - y location of tower base 
    refz                0.0;         - z location of tower base 
    hubz              100.0;         - hub height 
} 
 
turbine1 
{ 
    refx              400.0; 
    … 
 
 
general 
{ 
    yawAngle               0.0;      - turbine yaw angle 
    numberofBld            3         - # of blades 
    numberofBldPts        62;        - # of actuator elements per blade 
    rotorDiameter        126.3992;   - rotor diameter 
    epsilon                5.0;      - Gaussian width parameter 
    smearRadius           13.15;     - radius beyond which Gaussian has no effect 
    effectiveRadiusFactor  1.21;     - scale factor for rotor diameter  
    pointInterpType        1;        - option for linear interpolation of velocities 
} 

constant/turbineArrayPropertiesFAST 
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FAST Actuator Line Model Outputs 
• Load files : primary0.out, primary1.out, … 
•  These include time histories of load parameters 

specified in primary.fst 
    e.g. out-of-plane blade root bending moments, torque, yaw bearing 

moments, power, rotor speed … 

• Can be imported into Excel / MatLab for figures 
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Guidelines for Use 

• See actuator line guidelines 
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Sample Output 

Two NREL 5-MW turbines subjected to neutrally stable low-roughness 
atmospheric conditions showing the instantaneous streamwise velocity 
contours with iso-surface of Q invariant fixed at 0.0275 1/s 
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Sample Output 

NREL 5MW turbine in unstable high-roughness 
atmospheric flow with mean speed at 8 m/s @ 
hub height 
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Wind Plant Simulation 
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Wind Plant Simulation 
• Combination of the elements 

discussed above 

“Precursor” atmospheric 
simulation (OpenFOAM) 

Save planes of data 
every N time steps 

Use saved precursor 
data as inflow 
boundary conditions 

Actuator line turbine 
aerodynamics models 
(coupled with NREL’s FAST 
turbine dynamics model) 

Initialize wind 
farm domain 
with precursor 
volume field 3 km 3 km 

1 km 

Wind farm simulation (OpenFOAM) 
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Input 

• Nearly the same as atmospheric boundary 
layer solver 

• Difference in constant/ABLProperties 
 

// Is the turbine array active? 
turbineArrayOn            true; 
 
… 
 
 
 
 
// Mean field averaging start time. 
meanAvgStartTime          12100.0; 
 
// Correlation field averaging start time. 
corrAvgStartTime          12200.0; 
 

 

Activate the actuator turbine models 
 
 
 
 
 
 
 
We no longer take horizontal averages resulting 
in a mean profile.  We take time averages.  The 
mean is built up on the fly starting at 
meanAvgStartTime, and fluctuations away from 
that mean are taken to build correlations 
starting at corrAvgStartTime.  Allow enough 
time for transients to pass before starting to 
build up mean, and allow enough time for mean 
to be built before building up correlations. 
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Output 

• All the turbine information 
• Instantaneous Fields 

o U, T, p, u ,̕ T  ̕

• Mean Fields 
o Umean, Tmean 

• Correlation Fields 
o ‹ui̕uj̕›, ‹Tu̕j̕› 
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Guidelines for Use 
• Make sure domain boundaries have either predominant 

inflow or outflow 
o Remember that with Coriolis, wind changes directions with altitude 
o Possible to have wind flowing in near ground and flowing out above 
o We do not have a good boundary condition for that case 

 

• Use local mesh refinement around the turbines  
o but do it gently (i.e. give the turbulence time to cascade down before 

going to the next local refinement region) 

1.75 m 

7 m 

3.5 m 

10 m 

2.5 m 

5 m 
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Guidelines for Use 
• We generally use a time step such that the actuator line tip 

does not travel through more than one cell per time step 
• Can use larger time steps with actuator disk (which will be 

part of SOWFA soon). 
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Limitations/Known Issues 
• The wall shear stress model in the atmospheric solver is 

based on horizontal averages in the first layer of cells away 
from the surface 
o Horizontal averages do not make sense in the wind farm 
o Local refinement means that the first layer of grid cells are not all at 

the same height 
 
 

 

• What are the proper pressure boundary conditions with 
inflow/outflow? 
o We use Neumann and retain the driving pressure gradient term in the 

equations, setting driving pressure to the average value from the 
precursor 
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Compiling The Codes 
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Compiling the codes 

• Make sure you have OpenFOAM 2.0 or higher installed 
• Download the SOWFA codes at: 

http://wind.nrel.gov/designcodes/simulators/sowfa/  
• In your user OpenFOAM directory, put “user-2.0.x.tar.gz” and 

do “tar -xvzf user-2.0.x.tar.gz”.  Rename the “user” part to your 
username, and rename the “2.0.x” to the version of 
OpenFOAM you have installed. 

• Run ./Allwclean 
• Run ./Allwmake 
• See the README files 

http://wind.nrel.gov/designcodes/simulators/sowfa/�
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Example Cases: 
Precursor Atmospheric Boundary Layer 

Simulation 
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Atmospheric Boundary Layer 

• See “tutorials/precursorABL” 
• Uses the solver ABLPisoSolver 
• 2 cases: Neutral and unstable (-zi/L ≈ 4) 
• Wind:  9 m/s from 225 deg at 90 m 
• Domain size: 3km × 3km × 1 km (x × y × z) 

o Periodic in the horizontal 
• Grid size: 150 × 150 × 50  

o 20 m resolution throughout 
o Coarser than we would normally run a simulation 

• Run on 32 processors 
o Took about 27 min of wall clock time per 1000 s of simulation 
o Ran to 14,000 s of simulation time 
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The Process (see the “Allrun” script) 

• Build a coarse mesh with blockMesh (serial) 
o Builds a hexahedral mesh 

• Decompose the domain with decomposePar (serial) 
• Use refineHexMesh (parallel) to globally refine mesh to desired 

resolution 
o Splits hexahedral cells in half in each direction 

• Initialize the solution with setFieldsABL (parallel) 
• Run the solver from time 0 to quasi-equilibrium 
• Run the solver from quasi-equilibrium to +2000 s 

o Run with sampling of contour planes and boundary data (boundary data to be used later in 
wind plant simulation as turbulent inflow) 
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Results 

neutral unstable 
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Results 

neutral unstable 
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Results 

neutral unstable 
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Results 

U (m/s) 
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Example Cases: 
FAST-Couple Actuator Lines in Duct Flow 
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Case Study: fastDuct 

200m 
200m 

200m 
200m 

200m 

200m 

200m 

FLOW 

NREL 5 MW Turbines 

Uniform inflow condition at U∞ = 8 m/s 
Periodic BCs laterally (y and z directions) 

Computational Domain 

100m 

../tutorials/fastDuct/ 

outflow 
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Sample Run 

2 wind turbines 

Blade loadings are computed using FAST 

t = 140 sec 

• In ../fastDuct/   execute “Allrun” script 
    - currently set to run on a single node with 8 CPU cores 
    - generates uniform mesh 
    - decomposes the domain into nodes x cores 
    - runs fastPisoSolver in parallel 
 
• Once finished running: 
     - execute “reconstructPar –time 140 (any desired saved time) 
     - execute “foamToVTK –time 140 
     - use ParaView for visualization 
     - examine loads data from primary*.out using Excel/MatLab 
 
• Run “AllClean” to remove saved flow data, loads, and the grid 
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Sample Run 

2 wind turbines 

Blade loadings are computed using FAST 

Downstream turbine is being approached with wake structures  

t = 140 sec 

Streamwise Velocity Contours and iso-surface 
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Out-of-plane Blade Loadings and Power Output  from FAST 

Blade-tip acceleration 

Blade root shear force 

Example: primary0.out 
  - loads data primary*out can 
be opened using Excel with 
“tab delimited” options  
 
  - columns of data can be 
selected to generate figures 
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Out-of-plane Blade Loadings and Power Output  from FAST 

Blade-tip acceleration 

Blade root shear force 

Blade root out-of-plane bending moment Power generation 
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Example Cases: 
Wind Farm Simulation 
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Wind Farm Simulation 

• See “tutorials/windPlant” 
• Uses the solver windPlantPisoSolver 
• 2 cases: Neutral and unstable (-zi/L ≈ 4) 
• Wind:  9 m/s from 225 deg at 90 m 
• Domain size: 3km × 3km × 1 km (x × y × z) 
• Grid size:  

o Background grid is same as ABL precursor 
o Locally refined down to 2.5 m around single 5MW turbine in horizontal 

center of domain with 90 m hub height 
• Run on 64 processors 

o Took 21 hrs for 750 s of simulation time 
o Much smaller time step than precursor (dt = 0.015s) 
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The Process (see the “Allrun” script) 

• Build a coarse mesh with blockMesh (serial) 
o Builds a hexahedral mesh 

• Locally refine with topoSet (serial) and refineMesh (serial) 
• Use refineMesh (serial) to globally refine mesh to desired resolution 

o Splits hexahedral cells in half in each direction 

• Use initial field files from precursor simulation, but change the 
periodic boundaries to inflow/outflow (timeVaryingFixedMapped) to 
use saved boundary data from precursor using changeDictionary 
(serial) 

• Renumber the cells to get better matrix banding with renumberMesh 
(serial) 

• Decompose the domain with decomposePar (serial) 
• Initialize solution with precursor field using mapFields (serial) 
• Run the solver 
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Results 

The effect of too rapid a transition in 
grid resolution 

Increasing the filter width helped, 
but not the best fix 
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Results 

Results from a 48 turbine simulation1 of the Lillgrund offshore wind farm 

1 Churchfield, M. J., Lee, S., Michalakes, J., and Moriarty, P. J., “A Numerical Study of the Effects of Atmospheric and Wake Turbulence on Wind Turbine 
Dynamics,” Journal of Turbulence, Vol. 13, No. 14, pp. 1-32, 2012. 
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Help 

• First check the NWTC Codes forum at: 
https://wind.nrel.gov/forum/wind/ 
 

• Then contact 
o Matt Churchfield (matt.churchfield@nrel.gov) 
o Sang Lee (sang.lee@nrel.gov)  

 

https://wind.nrel.gov/forum/wind/�
mailto:matt.churchfield@nrel.gov�
mailto:sang.lee@nrel.gov�
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