
Autonomous Research for Real-World Science

ARROWS Workshop
May 19-21, 2025
Cecil H. & Ida Green Graduate and Professional Center 
Colorado School of Mines
Golden, CO

Hosted by the National Renewable Energy Laboratory
and Colorado School of Mines 



 
 

  
 

 

 

 
 

 
 

 

 
 

 

 

 
 

 
 

 
 

 

 
 

 

Welcome 
It is our distinct pleasure to welcome you to the Autonomous Research for Real-World Science (ARROWS) workshop, 
hosted by the National Renewable Energy Laboratory (NREL) and the Colorado School of Mines! We stand at a pivotal 
moment where the fields of materials science, chemistry, and autonomous experimentation are converging, creating 
unprecedented opportunities for discovery and innovation. AI-driven research methods and autonomous experimentation 
promise to fundamentally transform how we approach scientific challenges, accelerating the pace of development for 
practical, real-world solutions. ARROWS is dedicated to exploring this exciting intersection. 

Over the next three days, we bring together leading experts to delve into the practical applications and future potential of 
autonomous systems in science. We will explore key themes including the grand challenges in materials and chemistry ripe 
for autonomous approaches, the development of domain-specific analytics and visualization tools, the intricacies of 
autonomous decision-making in experimental workflows, and the real-world technical implementations that bring these 
concepts to life. Our aim is not only to showcase cutting-edge research but also to foster new collaborations, identify 
critical challenges and opportunities, and collectively strategize pathways for groundbreaking research and future funding 
initiatives. 

We are thrilled to have you join us for what promises to be a stimulating and productive workshop. We encourage active 
participation, open discussion, and the forging of new partnerships as we collectively shape the future of autonomous, 
real-world science. 

Warm regards, 

Steven R. Spurgeon 
National Renewable Energy 
Laboratory 
Colorado School of Mines 

Hilary Egan 
National Renewable Energy 
Laboratory 

Andriy Zakutayev 
National Renewable Energy 
Laboratory 



    
     

    
 

 
 

 

      
  

     
  

   
  

    
 

    

       
 

      
 

 
   

  
 

   
 

    

      
 

 
 

  

   
  

 

ARROWS Workshop: Agenda 
May 19-21, 2025 • Golden, CO 
Arrive Sunday, May 18, 2025 

Monday, May 19, 2025 
7:30 – 8:30 am REGISTRATION, Green Center, Colorado School of Mines 

8:30 – 9:00 am Welcome & Meeting Overview 
Peter Green, Deputy Director, National Renewable Energy Laboratory 
Steven R. Spurgeon, National Renewable Energy Laboratory 
Hilary Egan, National Renewable Energy Laboratory 
Andriy Zakutayev, National Renewable Energy Laboratory 

9:00 – 10:30 am SESSION 1: Platforms for Autonomous Discovery 
Chair: Andriy Zakutayev, National Renewable Energy Laboratory 

9:00 am Autonomous Materials Exploration for Thin-film and Solid Materials 
Taro Hitosugi, University of Tokyo 

9:30 am Data-Rich Autonomous Labs for Accelerated Materials Discovery 
Milad Abolhasani (Remote), North Carolina State University 

10:00 am AI, Microscopes, and the Quest for Better Materials 
Sergei V. Kalinin, University of Tennessee–Knoxville 

10:30 – 11:00 am Discussion Break 

11:00 – 12:30 pm SESSION 2: AI & Models for Autonomous Science 
Chair: Robert White, National Renewable Energy Laboratory 

11:00 am Accelerating Design of Organic Materials with Autonomous AI agents 
Olexandr Isayev, Carnegie Mellon University 

11:30 am 
Automated Continuous-Flow Synthesis, Foundation Models, and Multi-Agent 
Systems for Accelerated Discovery of Polymers 
Nathaniel Park, IBM Research 

12:00 pm Advanced Materials Meet Causal Learning 
Ayana Ghosh, Oak Ridge National Laboratory 

12:30 – 1:30 pm Working Lunch 

1:30 – 3:00 pm SESSION 3: Synthesis Workflows & Integration 
Chair: Davi Febba, National Renewable Energy Laboratory 

1:30 pm Enabling Autonomous Synthesis and Compositional Optimization in Epitaxial Film 
Growth via Machine Learning and Data Analytics 
Ryan Comes, University of Delaware 



     
    

 

     
  

  

    

      

      

    

   
         

         
 

     
 

 

         
       

 
 

   
 

 

    

       
 

    
 

  
  

    
 

Monday, May 19, 2025 Continued 
2:00 pm AI for Accelerated Materials Discovery at Intel Labs 

Santiago Miret (Remote), Intel Company 

2:30 pm Real-Time Autonomous Combinatorial Experimentation – Nimble and Agile 
Approaches to Self-Driving Laboratories 
Ichiro Takeuchi, University of Maryland 

3:00 – 3:30 pm Discussion Break 

3:30 – 5:00 pm Breakouts: Identifying Gaps and Opportunities 

5:00 – 6:00 pm Free Time / Travel to Mixer 

6:00 – 8:00 pm Mixer, Buffalo Rose (Golden, CO) 

Tuesday, May 20, 2025 
8:00 – 9:00 am REGISTRATION 

9:00 – 10:30 am SESSION 4: Autonomous Synthesis & Characterization 
Chair: Robert Epps, National Renewable Energy Laboratory 

9:00 am Nanomaterials Discovery Through AI-Enhanced Characterization: 
Faster, Cheaper & Better? 
Vinayak Dravid, Northwestern University 

9:30 am Challenges in Self-Driving Laboratories: Curiosity-Based Explorations, and the 
Need for Human-in-the-Loop Workflows for Maximizing Robustness and Prior 
Knowledge 
Rama Vasudevan, Oak Ridge National Laboratory 

10:00 am Advancing Ionomer-Based Water Electrolysis: Integrated Characterization, 
Foundation Models for Segmentation, and Autonomous Optimization 
Dani Ushizima, Lawrence Berkeley National Laboratory 

10:00 – 10:30 am Discussion Break 

10:30 – 12:00 pm SESSION 5: In Situ Discovery and Visualization 
Chair: Patrick Emami, National Renewable Energy Laboratory 

10:30 am 
Integrating Automation Tactics and Machine Learning to Direct Nanoscale and Atomic 
Scale Transformation Experiments
Raymond Unocic, North Carolina State University 

11:00 am Towards Machine-Learning Enabled Automated Analysis of Heterogeneous Nanomaterials
Mary Scott, Lawrence Berkeley National Laboratory 

11:30 am Practically Speaking: The Engines that Automate
Matthew Olszta, Pacific Northwest National Laboratory 



      
    

    

     
  

    
 

   
 

  

    

   

    
   

    

    
 

     

     
 

    

   
 

 
 

Tuesday, May 20, 2025 Continued 
12:00 – 12:30 pm Discussion Break 

12:30 – 1:30 pm Working Lunch 

1:30 – 4:30 pm NREL Facility Tours 
Hosts: Steven Spurgeon, Andriy Zakutayev, Hilary Egan, Brooks Tellekamp 

1:30 – 2:00 pm Shuttle to NREL 
Verified Tour Attendees 

2:00 – 4:00 pm NREL Facility Tours 
(Combi Synthesis, Autonomous Microscopy, Supercomputing) 

4:00 pm Return to Mines 

4:30 – 5:00 pm Free Time / Discussion Break 

5:00 – 7:00 pm Poster Session & Refreshments 

Wednesday, May 21, 2025
*Day 3 will only consist of discussions and writing of a perspective article for those interested in participating.

8:30 – 9:00 am Morning Coffee & Networking 

9:00 – 11:00 am Breakout Writing Session Part 1: 
Collaborative Perspective Article 

11:00 – 11:45 am Discussion Break / Group Photo 

11:45 – 1:00 pm Breakout Writing Session Part 2: 
Collaborative Perspective Article 

1:00 – 2:00 pm Working Lunch 

2:00 – 2:15 pm Concluding Remarks 
Steven R. Spurgeon, National Renewable Energy Laboratory 
Hilary Egan, National Renewable Energy Laboratory 
Andriy Zakutayev, National Renewable Energy Laboratory 

Thank You to Our Gold Sponsors! 

JEOL APEX
Energy Frontier Research Center 
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       Data-Rich Autonomous Labs for Accelerated Materials Discovery 

Milad Abolhasani1 

1. Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC
27695 USA

Quantum dots (QDs), semiconductor nanocrystals with size- and composition-dependent electronic and 
optical properties, offer significant potential for applications in renewable energy, quantum information 
processing, and optoelectronic devices. However, traditional synthesis and characterization methods for 
QDs are typically slow, resource-intensive, and challenging to scale, limiting rapid discovery and 
industrial implementation. To address these limitations, our group has developed Data-Rich 
Autonomous Labs that integrate modular fluidic reactors, robotics, automated experimentation, in-situ 
multi-modal characterization, and artificial intelligence (AI)-driven decision-making to substantially 
accelerate quantum dot discovery and precision manufacturing. 
Autonomous labs have emerged as powerful platforms capable of rapidly exploring extensive synthesis-
property parameter spaces of advanced functional materials. Recent advancements in autonomous 
experimentation have been primarily driven by process intensification principles, designed to streamline 
workflows through enhanced speed, safety, and resource efficiency. Specifically, the integration of 
microscale fluidic reactors and real-time characterization techniques enables precise control of reaction 
conditions, rapid equilibration, enhanced heat and mass transfer, and significant reduction in chemical 
consumption. 

Despite these advancements, current autonomous lab platforms largely rely on steady-state experimental 
approaches, neglecting valuable insights available from transient-state conditions. Leveraging transient-
state data can offer deeper mechanistic understanding of synthesis pathways and substantially enrich 
datasets available for AI-driven decision-making. This work introduces dynamic flow experimentation as 
an innovative approach for data-intensive exploration of QD synthesis parameters. By systematically 
varying reaction parameters during continuous operation and employing real-time in-situ 
characterization, these dynamic experiments generate comprehensive time-series data. This approach 
allows direct correlation of instantaneous flow conditions to steady-state equivalent residence times, 
significantly intensifying data generation rates. 

In this talk, I will present a data-rich autonomous lab utilizing a dynamic experimentation method that 
operates at least 100 times faster than conventional steady-state synthesis techniques, simultaneously 
reducing chemical consumption by more than threefold. Using cadmium selenide (CdSe) QDs as a 
representative case study, I will demonstrate how this novel approach enables rapid and comprehensive 
mapping of synthesis parameters to material properties. Furthermore, the extensive dataset generated 
supports the development of robust digital twins, facilitating precise autonomous closed-loop 
experimentation to optimize multiple emission wavelengths for advanced photonic and energy 
applications. 



      
     

 
   

 
  
  
   

 
         
      
      

           
        

      
        

   
 

         
          
          

        
 

 
       

       
          

          
   

         
       

       
 

 
           

        
        

    
         

 
 
    

  
    

 
  

     

   

Enabling Autonomous Synthesis and Compositional Optimization in Epitaxial Film 
Growth via Machine Learning and Data Analytics 

Ryan Comes1,2, Patrick Gemperline2, Sumner Harris3, and Rama Vasudevan3 

1. University of Delaware, Department of Materials Science and Engineering, Newark, DE, USA
2. Auburn University, Department of Physics, Auburn, AL, USA
3. Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, TN, USA

Machine learning (ML) has revolutionized the field of materials science, particularly in the synthesis of 
epitaxial films. By leveraging ML algorithms, researchers can optimize synthesis parameters, predict 
material properties, and enhance real-time monitoring techniques. In situ characterization during film 
growth provides an avenue to enable our goal of ML-aided film growth. The integration of ML in 
epitaxial film synthesis involves several key steps, starting with high-quality, real-time data collection 
from in situ monitoring techniques such as reflection high energy electron diffraction (RHEED). Our 
work focuses on addressing the challenges in analyzing RHEED data during molecular beam epitaxy 
(MBE) and pulsed laser deposition (PLD) synthesis. 

By implementing advanced data analytics techniques such as principal component analysis (PCA) and 
k-means clustering [1], we have enhanced the precision of real-time monitoring with greater sensitivity
to subtle features in the images. With a new residual sum-of-squares (RSS) alignment algorithm, we
have enabled the quantitative comparison of RHEED videos between samples, facilitating the
identification of optimal growth conditions and improving the reproducibility of epitaxial film synthesis.

Building on this foundation, have expanded into the application of deep learning to predict the 
stoichiometry of Sr₂ₓTi₂(1−ₓ)O₃ thin films using RHEED images acquired during PLD [2]. A gated 
convolutional neural network trained for regression of the Sr atomic fraction achieved accurate 
predictions with a small dataset of 31 samples. Explainable AI techniques revealed a previously 
unknown correlation between diffraction streak features and cation stoichiometry in Sr₂ₓTi₂(1−ₓ)O₃ thin 
films. This study highlights how ML can transform a ubiquitous in-situ diagnostic tool, typically limited 
to qualitative assessments, into a quantitative surrogate measurement of continuously valued thin film 
properties. Such methods are critically needed to enable real-time control, autonomous workflows, and 
accelerate traditional synthesis approaches. 

Looking forward, the advancements presented in these studies pave the way for the future of 
autonomous material synthesis [3] and real-time monitoring. By leveraging ML, researchers can achieve 
efficient and reproducible epitaxial film synthesis, ultimately contributing to the goals of developing 
high-quality materials with tailored properties. The synergy between advanced data analytics and deep 
learning techniques offers a promising direction for the continued evolution of ML-assisted epitaxial 
film synthesis, enabling more precise control and accelerated discovery in materials science. 

[1] P.T. Gemperline, et al. Journal of Vacuum Science and Technology A, 43 (2025), 032701.
[2] S.B. Harris*, P.T. Gemperline*, et al. Nano Letters, Article ASAP (2025),
[3] T. Kaspar, et al. Journal of Vacuum Science and Technology A, 43 (2025), 032702.
[4] This work was supported by the Center for Nanophase Materials Sciences (CNMS), which is a U.S.
Department of Energy, Office of Science User Facility at Oak Ridge National Laboratory. P.T.G. and



 
 

   
  

 
 
 

 
 

           
             

           
 

 

  
             
 

            

 

R.B.C. gratefully acknowledge funding for RHEED analytics from the National Science Foundation 
Division of Materials Research under award DMR-2045993. P.T.G. also acknowledges support from the 
Department of Energy’s Office of Science Graduate Student Research Program (DE-SC0014664). The 
authors also acknowledge assistance from Microsoft Copilot in the generation of this abstract. 

Figure 1. Results from the k-means clustering of a recording containing 2 LFO samples. The black 
vertical line at  min represents the division between the samples. (a) A graph of the clusters over the 
course of the growths; (b)–(e) the centroid images corresponding to the clusters in (a) in an ascending 
numerical order left to right. 

Figure 2. Overview of the stoichiometry estimation process for Sr₂ₓTi₂(1−ₓ)O₃ films based on RHEED 
images. 



 

  

 

 

  
 

        
      

     
    

      
 

       
      

  
       

        
  

       
           

    
    

        
          

     
      

       
       

            
 

      
    

        
    

      
  

  
      

  
        

   
 

Nanomaterials Discovery Through AI-Enhanced Characterization: 

(Faster, Cheaper & Better?) 

Alfred Yan1, Roberto dos Reis1,2, & Vinayak P. Dravid1,2,3 

1Department of Materials Science and Engineering, 2The NUANCE Center, 3International 
Institute of Nanotechnology; Northwestern University, Evanston, Illinois 60208, USA 

Materials characterization has long been recognized as the critical bottleneck in accelerating 
materials discovery and development, especially for diversity of crystalline materials. Traditional 
approaches to crystallographic analysis, compositional mapping, and electronic structure 
determination rely on sequential, time-consuming techniques that cannot keep pace with modern 
synthesis methods. This fundamental mismatch between synthesis and characterization throughput 
has severely limited our ability to navigate vast materials design spaces efficiently. 

This challenge is particularly evident in “megalibraries”, which represent massively parallel 
deposition of nanoparticles with varied compositions prepared via scanning-probe tip-based 
synthesis 1,2. Here, the challenge is to “ration” or optimize the number of electrons that need to be 
utilized spatially to address characterization needs of millions of nanoparticles. Clearly, addressing 
this challenge requires innovative approaches that leverage automation and machine learning 
coupled to innate rapid analytical methods 3–5 . 

Among limited approaches, diffraction has the potential to be that “one-stop-shop” to elucidate 
the crystal structure of a nanoparticle down to its relevant details, such as point- and space-group 
symmetry. In this context, Transmission Kikuchi Diffraction (TKD), implemented within scanning 
electron microscopy (SEM), offers an ideal starting point by providing crystallographic 
information at significantly higher spatial resolution than conventional EBSD 6. Our approach 
transforms TKD from a specialized technique into a potentially high-throughput analytical tool 
through automated data acquisition and machine learning-based pattern interpretation. This is 
enabled by neural networks trained on comprehensive dynamical simulations to identify subtle 
structural features that would remain hidden using conventional sequential techniques. A 
schematic depicting the data acquisition and training workflow is shown in Figure 1. This approach 
has the potential for rapid space group analysis even without prior knowledge of the sample 
composition. 

Further, through multimodal data integration, we can simultaneously process TKD patterns 
with Energy Dispersive X-ray spectroscopy signals creating a unified characterization platform 
that reveals correlations between crystal structure and elemental distribution. This multimodal 
framework extends beyond SEM to transmission electron microscopy, where we've pioneered nD-
STEM methodologies that capture diffraction, imaging, and spectroscopic dimensions 
concurrently, dramatically accelerating materials analysis while revealing previously inaccessible 
structure-property relationships. By integrating these automated characterization methods with 
predictive modeling, we establish closed-loop experimental workflows that enhance discovery 
efficiency across diverse application domains including energy, catalysis, and sensing. 

The presentation will emphasize unprecedented opportunities with the convergence of machine 
learning and multimodal electron microscopy for accelerated materials exploration. 
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(1) Kluender, E. J.; Hedrick, J. L.; Brown, K. A.; Rao, R.; Meckes, B.; Du, J. S.; Moreau, L. M.;
Maruyama, B.; Mirkin, C. A. Catalyst Discovery through Megalibraries of Nanomaterials.
Proc. Natl. Acad. Sci. 2019, 116 (1), 40–45. https://doi.org/10.1073/pnas.1815358116.

(2) Wahl, C. B.; Swisher, J. H.; Smith, P. T.; Dravid, V. P.; Mirkin, C. A. Traversing the
Periodic Table through Phase-Separating Nanoreactors. Adv. Mater. n/a (n/a), 2500088.
https://doi.org/10.1002/adma.202500088.

(3) Hujsak, K. A.; Roth, E. W.; Kellogg, W.; Li, Y.; Dravid, V. P. High Speed/Low Dose
Analytical Electron Microscopy with Dynamic Sampling. Micron 2018, 108, 31–40.
https://doi.org/10.1016/j.micron.2018.03.001.

(4) Wahl, C. B.; Mirkin, C. A.; Dravid, V. P. Towards Autonomous Electron Microscopy for
High-Throughput Materials Discovery. Microsc. Microanal. 2023, 29 (Supplement_1),
1913–1914. https://doi.org/10.1093/micmic/ozad067.988.

(5) Day, A. L.; Wahl, C. B.; Gupta, V.; Dos Reis, R.; Liao, W.; Mirkin, C. A.; Dravid, V. P.;
Choudhary, A.; Agrawal, A. Machine Learning-Enabled Image Classification for Automated
Electron Microscopy. Microsc. Microanal. 2024, 30 (3), 456–465.
https://doi.org/10.1093/mam/ozae042.

(6) Sneddon, G. C.; Trimby, P. W.; Cairney, J. M. Transmission Kikuchi Diffraction in a
Scanning Electron Microscope: A Review. Mater. Sci. Eng. R Rep. 2016, 110, 1–12.
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Figure 1: Schematic of workflow for developing neural network models to analyze the space 
group from a Kikuchi pattern. 
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Advanced Materials Meet Causal Learning 

Ayana Ghosh1 

1. Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 
USA 

For decades, progress in materials science has come from a powerful partnership between theory and 
experiment. Theoretical models such as band theory help us understand how materials behave at a 
fundamental level, while experimental tools such as X-ray diffraction and electron microscopy allow us 
to observe and measure those behaviors in the real world. This collaboration has led to incredible 
advances, from semiconductors in computers to high-performance alloys in aerospace. 

Today, a transformative frontier is taking shape — one that bridges materials science with modern data-
driven technologies. The ongoing advancements in the landscape of artificial intelligence (AI) that have 
revolutionized fields of image recognition, natural language processing, and many others are now being 
used to accelerate the discovery, design of novel materials, process optimization. These methods help us 
analyze large datasets, identify hidden patterns, and make predictions about how a material will perform 
based on its structure or composition. The growing integration is helping to build a more efficient, 
predictive, and exploratory approach to materials research—one that could dramatically speed up 
innovation across energy, electronics, medicine, and beyond. 

While these methods have made remarkable strides in detecting patterns in complex data, their reliance 
on statistical relationships often falls short in uncovering the fundamental physics or chemistry that 
govern material properties. These models excel at finding correlations but struggle to provide insight 
into the underlying mechanisms, limiting our ability to understand why and how material parameters 
influence specific properties. A significant challenge is the lack of explainability and interpretability in 
most ML models, including large language models (LLMs), which are designed to predict rather than 
finding scientific reasoning behind the predictions. This limitation underscores [1] the need for bringing 
in methods that not only identify patterns but also explain the underlying processes that govern material 
properties. 

In our studies, we have been investigating, implementing and developing causal ML approaches for 
advanced functional materials that allow us to identify underlying cause-effect relations that govern 
physical properties of interest, test whether a hypothesized model is correct and quantify how changes in 
control variables affect outcomes. While verifying causal relationships can be challenging—often 
requiring validation from theory and simulations—suitable proxies can be designed to represent various 
scenarios and help establish robust structure-property relationships. 

We have focused on perovskite oxides, known for their unique electronic, magnetic, and structural 
properties, essential for advanced electronic and energy devices. Our goal is to resolve key challenges 
that have so far eluded traditional simulations, experiments, and standard ML/DL methods, making 
these materials viable for practical applications. The origin of cation ordering [2] in these materials in 
the form of double perovskites (DPOs) has remained as a mystery for years since several factors such as 
cation radii and/or oxidation states, charge ordering, cooperative first order Jahn−Teller distortions of B-
site cations (FOJT), A-site vacancies coupled with SOJT distortion, and tilt of BO6/B′O6 octahedra, 



contribute to it. Bringing in the causal intuitions made it possible to not only pin down the necessary 
condition for tunable cation ordering but also establish quantifiable (previously unknown) stricture-
property relationships between geometry, modes, and ordering. Comprehensive insights gained from this 
study shows that the trilinear coupling between structural modes representing tilt, rotation, and A-site 
antiferroelectric displacement in the Landau free-energy expansion, leads to formation of A-site clear 
layered ordering in hybrid improper ferroelectric oxides. 

A follow-up study based on density functional theory (DFT) calculations [3,4] combined with finite-
temperature ab initio molecular dynamics (AIMD) simulations, reveals that polarization switching in 
DPOs occurs through a two-step process, driven by out-of-phase rotation. Our results [5] indicate that 
switching via out-of-phase rotation leads to lower switching barriers than in-phase rotation and tilt for 
superlattices, complying with that found for layered DPOs. However, the challenge of pinpointing a 
mechanism responsible behind tuning the switching barrier is not straightforward to understand. Here, 
we have developed a causal reasoning workflow to uncover such physics. 

In conclusion, although our causal workflows [6-8] have primarily been applied to perovskite oxides, the 
methodologies are intended to be broadly applicable to the materials design and optimization process. 
By providing a deeper understanding of atomistic mechanisms and material functionalities, these can be 
extended to other materials systems, enabling more efficient decision-making, prediction of properties, 
and the design of advanced materials across diverse applications in electronics, energy, and beyond. 
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Figure 1. Schematic illustrating how causal models facilitate decision-making in materials design and 
discovery, aimed towards uncovering uncover fundamental physics and integration of theory into 
autonomous experimental workflows. 

References: 
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[8] Z Fox et al. Mach. Learn.: Sci. Technol., 5 (2024), 035056. 
[9] The author acknowledges the funding from the Laboratory Directed Research and Development 
Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of 
Energy. ORNL is managed by UT-Battelle, LLC, for DOE under contract no. DE-AC05-00OR22725. 



      
 

  
 

     
  

 
     

       
       

 
 

        
       

      
 

       
   

    
       

  
 

        
        

        
 

 
 

 
      

  

 

 

 

   
   

 

 

 

 

 

 

Autonomous Materials Exploration for Thin-film and Solid materials 

Taro Hitosugi1,2

1. Department of Chemistry, The University of Tokyo, Tokyo, Japan
2 School of Materials and Chemical Technology, Institute of Science Tokyo, Tokyo, Japan

Integrating machine learning and robotics into established research methodologies can accelerate 
materials science research significantly. Many studies have already demonstrated the potential of 
autonomous (self-driving) experiments in materials science [1, 2]. The rapid advancement of digital 
technologies is changing the way we conduct research. 

Here, we discuss the status and prospects of data- and robot-driven materials research using autonomous 
experiments. We have developed an autonomous experimental system for thin-film materials. We 
constructed a system that automates sample handling, thin-film deposition, optimization of growth 
conditions, and data management. By using Bayesian optimization in conjunction with robots, our 
approach facilitates high-throughput experiments and generates comprehensive datasets that cover many 
aspects of materials (X-ray diffraction, Raman spectroscopy, scanning electron microscopy, optical 
transmittance measurement, electronic conductivity measurement). We tuned the hyperparameter for 
Bayesian optimization using the domain knowledge of chemistry; the number of trials to reach the global 
optimum is reduced [3, 4]. 

The system demonstrated the synthesis and optimization of the electrical resistance in Nb-doped TiO2 thin 
films [5]. Moreover, this autonomous approach has enabled the discovery of new ionic conductors [6]. 
We discuss the potential impact of this technology in accelerating materials science research, particularly 
in solid materials. 

Cluster 
system 

SEM/EDS XRD 

COBOTTA 
Sputter 

Thin film 
deposition 

Raman 
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Figure 1. Autonomous experimental system for thin-film material exploration [7]. 
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         Accelerating design of organic materials with autonomous AI agents 

Olexandr Isayev1,2 

1.Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA
15213, USA
2. Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213,
USA

Automation of experiments in self-driving laboratories promises to revolutionize scientific 
research by enabling remote experimentation and improving reproducibility. However, maintaining 
quality control without constant human oversight remains a critical challenge. In this talk, we will 
provide an overview of the latest developments in machine learning and AI methods and application to 
the problem of molecular and material discovery at Isayev’s Lab at CMU. We identify several areas 
where methods have the potential to accelerate chemistry research and disrupt traditional approaches. 

HPLC remains one of the most critical methods for analytical and preparative separations in 
pharmaceutical, (bio-)chemical, and materials research. While modern HPLC instruments offer partial 
automation, day-to-day reliability still relies on expert monitoring of anomalies. This issue is even more 
pressing in academic automated laboratory settings, where instruments may be remotely shared among 
multiple researchers and institutions, leading to high throughput, which makes rare events more 
significant, especially for closed-loop experiments. Under these conditions, it is neither feasible nor 
cost-effective for highly trained operators to continuously supervise every single experimental run. Our 
study presents a generalized machine learning (ML) framework for anomaly detection that is protocol-
agnostic and instrument-neutral.[1] 

Recently we also proposed a novel ML-guided materials discovery platform that combines 
synergistic innovations in automated flow synthesis and automated machine learning (AutoML) method 
development. A software-controlled, continuous polymer synthesis platform enables rapid iterative 
experimental–computational cycles that result in the synthesis of hundreds of unique copolymer 
compositions within a multi-variable compositional space.[2] We are currently enhancing this platform 
with Reinforcement learning (RL) agents. Under the RL paradigm, an agent(s) is trained to select 
actions that maximize the cumulative sum of rewards, which, in the context of chemical discovery, is 
often consistent with a target property, structural feature, or function. RL agents can learn to suggest 
synthesis protocols, potential reactants, and experimental conditions by training via value-based or 
policy-based iterative schemes. 

Here, a human-in-the-loop reinforcement learning (RLHF) approach is used to discover 
exceptional polyurethane elastomers that overcome pervasive stress–strain property tradeoffs.[3] 
Starting with a diverse training set of formulations, a coupled multi-component reward system was 
identified that guides RL agents toward materials with both high strength and extensibility. Through 
several rounds of iterative optimization combining RL predictions with human chemical intuition, we 
identified elastomers with more than double the average toughness compared to the initial training set. 

[1] Gusev F, Kline BC, Quinn R, Xu A, Smith B, Frezza B, et al. Machine Learning anomaly detection
of automated HPLC experiments in the Cloud Laboratory. ChemRxiv. 2025; doi:10.26434/chemrxiv-
2025-7ggzl
[2] Marcus Reis, Filipp Gusev, Nicholas G. Taylor, Sang Hun Chung, Matthew D. Verber, Yueh Z. Lee,
Olexandr Isayev, and Frank A. Leibfarth. Machine-Learning-Guided Discovery of 19F MRI Agents



  
 

  
 

Enabled by Automated Copolymer Synthesis. Journal of the American Chemical Society 2021 143 (42), 
17677-17689. DOI: 10.1021/jacs.1c08181. 
[3] Gusev F, Kline BC, Quinn R, Xu A, Smith B, Frezza B, et al. Machine Learning anomaly detection
of automated HPLC experiments in the Cloud Laboratory. ChemRxiv. 2025; doi:10.26434/chemrxiv-
2025-7ggzl



        
 

   
 

         
  

 
    

 

  
   

  
  

  
 

 
 

 
 

  
 

  
 
 

  
 

 
    

  

 
 

    
 

 
 

               
           

                
               

         
             
           

       
            

       
              

         

 

  

                

                

            

         

AI, Microscopes, and the Quest for Better Materials 

Sergei V. Kalinin* 

University of Tennessee, Knoxville and Pacific Northwest National Laboratory 
*E-mail: sergei2@utk.edu 

Materials shape the world around us, and the discovery of new materials defines 
the future of multiple technological frontiers. Breakthroughs in photovoltaics and 
energy storage are reshaping the global energy landscape, while extreme environments 
in hypersonics, rockets, and nuclear applications demand materials with unprecedented 
resilience. We are now at a pivotal moment where unprecedented investments in 
machine learning (ML) and artificial intelligence (AI) are poised to transform scientific
discovery. Yet, among all areas of the physical sciences, materials science remains one of
the most challenging for AI. The past two decades have demonstrated that simply
scaling computation or synthesis by orders of magnitude is not enough to accelerate 
progress. The key lies in closing the loop between theory, hypothesis generation, 
experiment planning, synthesis, and characterization—while continuously refining 
theoretical models based on experimental feedback. 

In this presentation, I will illustrate how ML-driven electron and scanning probe 
microscopies can be leveraged to uncover structure-property relationships in complex 
materials, extract fundamental physical laws governing ferroelectric polarization 
dynamics and property evolution across combinatorial libraries, and even manipulate 
matter on the nanometer and atomic level. Central to this approach is the concept of
probabilistic reward functions, which enable autonomous research workflows while
integrating human-in-the-loop decision-making. I will demonstrate how reward-based 
automated characterization can be used to close the materials discovery loop, 
orchestrate diverse characterization tools across shared chemical spaces, and co-
navigate costly experiments and epistemic uncertainty-aware theoretical models. The 
special case here is operationalized materials and physics discovery in combinatorial
libraries, where ML-enabled scanning probe microscope autonomously performs 
topography and spectroscopy tuning and combinatorial space exploration. I further 
discuss strategies to extend these strategies towards electron microscopy bypassing the 
sample preparation bottleneck. Looking ahead, this work lays the foundation for the 
automated lab of the future, where human intuition and AI-driven autonomy work in
synergy to drive materials discovery at an unprecedented scale. 

Sergei Kalinin is a Weston Fulton chair professor at the University of Tennessee, Knoxville. In 2022 
– 2023, he has been a principal scientist at Amazon special projects (moon shot factory). Before then, 
he has spent 20 years at Oak Ridge National Laboratory where he was corporate fellow and group 
leader at the Center for Nanophase Materials Sciences. He received his MS degree from Moscow State 
University in 1998 and Ph.D. from the University of Pennsylvania (with Dawn Bonnell) in 2002. His 
research focuses on the applications of machine learning and artificial intelligence methods in 
materials synthesis, discovery, and optimization, automated experiment and autonomous imaging and 
characterization workflows in scanning transmission electron microscopy and scanning probes for 
applications including physics discovery, atomic fabrication, as well as mesoscopic studies of 
electrochemical, ferroelectric, and transport phenomena via scanning probe microscopy. When at 
ORNL, he led several major programs integrating the ML and physical sciences and instrumentation, 
including the Institute for Functional Imaging of Materials (IFIM 2014-2019), the first program in DOE 

mailto:sergei2@utk.edu


              
              
               

           
              

         
       

      
             

             
            

              
                

              
                

      

  

         

integrating ML and physical sciences, and the microscopy effort in INTERSECT program that realized 
first ML-controlled scanning probe and electron microscopes. At UTK MSE, he participated in building 
one of the first efforts in the country on ML-driven materials exploration. At UTK, his team has now 
realized fully AI-controlled SPM and STEM systems and co-orchestration workflows between multiple 
characterization tools for scientific discovery. He has also taught multiple courses on the ML for 
materials science and microscopy including Bayesian optimization methods. Sergei has co-authored 
>650 publications, with a total citation of ~58,000 and an h-index of ~118. He is a fellow of NAI,
Academia Europaea, AAAS, RSC, AAIA, MRS, APS, IoP, IEEE, Foresight Institute, and AVS; a recipient of
the Adler Lectureship (APS 2025), Duncumb Award (MSA 2024), Medard Welch Award (AVS 2023),
Orton Lectureship (ACerS 2023), Feynmann Prize of Foresight Institute (2022), Blavatnik Award for
Physical Sciences (2018), RMS medal for Scanning Probe Microscopy (2015), Presidential Early Career
Award for Scientists and Engineers (PECASE) (2009); Burton medal of Microscopy Society of America
(2010); 5 R&D100 Awards (2008, 2010, 2016, 2018, and 2023); and a number of other distinctions. As
part of his professional services, he organized many professional conferences and workshops at MRS,
APS and AVS; for 15 years organized workshop series on PFM, and served/s on multiple Editorial
Boards including NPJ Comp. Mat., J. Appl. Phys, and Appl. Phys Lett.



     
 

  
 

  
 

             
       

        
          

         
  

 
        

        
          

        
      

     
       
          

 
 

          
           

         
            

        
             

            
         

       
 

 
    

         
    

 
 

     
  

 
      

          
         

 

        AI for Accelerated Materials Discovery at Intel Labs 

Santiago Miret1 

1. Intel Labs, Santa Clara, California, United States 

Machine Learning (ML) methods that can process large amounts of heterogenous data have tremendous 
potential to accelerate the end-to-end discovery, synthesis, and characterization of novel materials to 
address global-scale challenges like clean energy, sustainable semiconductor manufacturing and drug 
discovery. In this talk, I will present an overview of Intel Labs’ research efforts and community 
engagement efforts on ML for materials discovery along with technical deep dives focusing on two 
ambitious goals: 

1. Machine Learning Interatomic Potentials (MLIPs): Accelerating scientific simulation by >100x using 
geometric deep learning and software tools to enable large-scale deployment of machine learning 
potentials for real-world simulations. Through the Open MatSci ML Toolkit [1], Intel Labs makes the 
training and deployment of MLIPs accessible by connecting relevant data sources with modern ML 
models and scalable deep learning training capabilities. In addition to the Open MatSci ML Toolkit, we 
have enabled the acceleration of equivariant deep learning methods through EquiTriton [2], an open-
source implementation of Triton-based spherical harmonic kernels. The acceleration of equivariant 
models by EquiTriton has enabled us to train models at higher levels of expressivity of spherical 
harmonics kernels and study their relative importances when modeling materials properties. 

2. Materials Science Language Models: Leveraging Large Language Models (LLMs) as scientific 
assistants to automate scientific tasks for materials discovery. While modern LLMs have made great 
progress in solving language-based tasks for a variety of fields, they still exhibit lack of understanding 
of the materials science domain. We have proposed some new methods to alleviate this gap, including 
new benchmarks (MatSciNLP [3]), multi-round instruction fine-tuning for the first billion-scale LLM 
for materials science (HoneyBee [4]), as well as a tool-augmented LLM that markedly improves the 
capabilities of diverse language models to perform materials science language tasks (HoneyComb [5]). 
Concurrently, we continue to showcase gaps and limitations of language models, such as property 
prediction dependent on geometry (MatText [6]), that require further research to enable important 
capabilities. 

[1] Santiago Miret, Kin Long Kelvin Lee, Carmelo Gonzales, Marcel Nassar, and Matthew Spellings. 
"The Open MatSci ML Toolkit: A Flexible Framework for Machine Learning in Materials 
Science." Transactions on Machine Learning Research, 2023. 
https://openreview.net/forum?id=QBMyDZsPMd 

[2] Lee, Kin Long Kelvin, Mikhail Galkin, and Santiago Miret. "Scaling Computational Performance of 
Spherical Harmonics Kernels with Triton." AI for Accelerated Materials Design-Vienna 2024. 2024. 

[3] Yu Song, Santiago Miret, and Bang Liu. 2023. MatSci-NLP: Evaluating Scientific Language Models 
on Materials Science Language Tasks Using Text-to-Schema Modeling. In Proceedings of the 61st 
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 
3621–3639, Toronto, Canada. Association for Computational Linguistics. 

https://openreview.net/forum?id=QBMyDZsPMd


 
      

           
      

 
 

            
 

 
     

    

[4] Yu Song, Santiago Miret, Huan Zhang, and Bang Liu. 2023. HoneyBee: Progressive Instruction 
Finetuning of Large Language Models for Materials Science. In Findings of the Association for 
Computational Linguistics: EMNLP 2023, pages 5724–5739, Singapore. Association for Computational 
Linguistics. 

[5] Zhang, Huan, et al. "HoneyComb: A Flexible LLM-Based Agent System for Materials Science.” AI 
for Accelerated Materials Design-NeurIPS 2024. 2024. 

[6] Alampara, Nawaf, Santiago Miret, and Kevin Maik Jablonka. "MatText: Do Language Models Need 
More than Text & Scale for Materials Modeling?." AI for Accelerated Materials Design-Vienna 2024. 



     
 

 
            

 
              

                 
                   
                

                     
                      

                 
            

 
                   

                 
               

                
                

               
                      

                    
            

 
                 

                   
             

                
              

                      
               

 
                
                      
                 

                  
                    

                   
    

 
              

                
             

                
                  

                  
              

                    
 

 
                  

                
              

 
 

      

                  
     

                  
  

            
                   

       
        

     
    

                   

                

              
                       

   

        

        
  

           

                    

 

           
              

                  

Practically Speaking: The Engines that Automate 

Matthew Olszta1 

1. Pacific Northwest National Laboratory, Richland, WA, 99352, United States of America 

Automation has always been with us since the dawn of invention. Groups or individuals, typically guided by necessity, adapted to 
their surroundings by creating new methods to assist their daily lives. Initially, these creations were often simple and many times 
crude, but they sparked new thoughts and pathways that inspired others. Automation is just one facet of invention, but it is often 
closer to mature development of inventive thought. It occurs when inventions are streamlined to a point where human intervention 
is often not necessary. For this reason, automation is typically considered for repetitive tasks that do not require creativity or 
innovation. In reality, the implementation of automation is more often a cost savings function. Can a process be designed that has 
reliability, speed, and accuracy that could effectively replace human interaction? In the sciences, which inherently require 
creativity, there is often considerable pushback; “A computer could never do my job!” 

Automation has come for scanning transmission electron microscopy, and we must embrace it without a) alienating the field, b) 
losing sight of fundamental science principles, and c) developing black box technologies which can be applied without concern for 
data accuracy. In truth, through innovation we have been marching towards automation in the development of new tools and 
advanced microscopes. For instance, linescans that were initially collected step by step were replaced by automated 
rastering/scanning of the beam, and automated diffraction pattern collection was displaced by 4D STEM. In a certain light, these 
could be seen as advances that were just small steps towards full automation. These periodic advancements still require human 
interaction, and thus they were not truly considered automaton. There was still a “human in the loop”, but at what point is that no 
longer a necessity? For newer, more advanced microscopes, this is becoming a reality, but what about the thousands of older 
microscopes that are still maintained and operated by humans for everyday analysis? 

Our research goals are twofold: First, we aim to develop automated tools that still require human interaction, and second, we are 
working with platforms that are widespread and not confined to a single microscope manufacturer. There will always be an 
inherent distrust of automation from prior generations, and therefore creating interactive modalities that keep scientists engaged is 
important for development of next generation, fully automated tools. Additionally, development of these tools in more open source 
and accessible platforms provides a sandbox to encourage widespread development. While our work spans both machine learning 
integration and stage control, our discussion will focus on the later, as we feel it is crucial to have a platform for anyone to build 
upon. Understanding stage motion and broader microscope control is tantamount to being able to automate any experiment. 

We will discuss stage movements for automated montaging1-4 as well as performing automated oblique (e.g., combinations of alpha 
and beta tilts) tilt series3 all through Gatan Microscopy Suite (GMS). The power of this approach is that it allows for full control of 
the sample in a standard double tilt holder (Figure 1). Combining multimodal observations (ADF/BF and EDS) across physical 
interfaces and determination of crystallographic phases on the order of nanometers makes this an extremely useful facet of the 
materials science toolbox. To optimize the use of multimodal approaches it is necessary to utilize machine learning techniques such 
as few shot analysis5 coupled with integrated control of microscope platforms (e.g., GMS)1. If we cannot collect big data through 
stage automation, then AI tools are not practical. 

Automation of scanning transmission electron microscopy (STEM) is necessary in assisting the development of next generation 
materials characterization. This will be important for a variety of materials including those under extreme environments. Materials 
that experience high temperatures and irradiation can undergo drastic transformations over the lifetime of the intended components. 
We will illustrate how studying void analysis of materials in corrosive environments (Figure 2) and under irradiation can benefit 
immensely from computed tilting and spectroscopy. The ability to quickly and accurately predict how materials properties can 
change in response to these stimuli can be extremely beneficial to safety and productivity. Most often, it is necessary to inspect 
these changes at the nanometer and atomic length scales to fully appreciate slight but meaningful modifications, but because 
techniques such as STEM are time consuming and expensive, it is imperative to automate not only data collection but analysis as 
well. 

The future of automation in the electron microscope needs to be built upon an engine that can not only be utilized on current 
microscopes, but as well can be applied to future stage designs built towards enhanced stability, repeatability, and fidelity. We 
believe that by creating a sandbox for all microscopists to play in now will pay dividends well into the future. 



 
 

                  
 
 
 

 
 

               
 
 

 
 

    
 

   
      

  
 

     
   

  
   

     
  

 

Figure 1. Cradle schematic on a JEOL ARM double tilt holder and corresponding tip tilt motion tracker. 

Figure 2. Void formation ahead of crack tips in Ag/Au selective corrosion studies4. 

References: 

1 Olszta, M. et al. An Automated Scanning Transmission Electron Microscope Guided by Sparse Data 
Analytics. Microscopy and Microanalysis 28, 1611-1621 (2022). 
https://doi.org/10.1017/S1431927622012065 %J Microscopy and Microanalysis 

2 Fiedler, K. R. et al. Evaluating Stage Motion for Automated Electron Microscopy. Microscopy and 
Microanalysis 29, 1931-1939 (2023). https://doi.org/10.1093/micmic/ozad108 %J Microscopy and 
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3 Olszta, M. et al. Automated Oblique Tilt Series in STEM. Microscopy and Microanalysis 29, 1874-1874 
(2023). https://doi.org/10.1093/micmic/ozad067.967 %J Microscopy and Microanalysis 

4 Olszta, M. & Fiedler, K. Nanocartography: Planning for success in analytical electron microscopy. 
Elemental Microscopy (2024). https://doi.org/10.69761/DNKA1581 

5 Akers, S. et al. Rapid and flexible segmentation of electron microscopy data using few-shot machine 
learning. npj Computational Materials 7, 187 (2021). https://doi.org/10.1038/s41524-021-00652-z 
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 Automated Continuous-Flow Synthesis, Foundation Models, and Multi-Agent 
Systems for Accelerated Discovery of Polymers 

Nathaniel H. Park1, Tiffany J. Callahan1, Pedro Arechea,1 Eduardo A. Soares,2 Victor Shirasuna,2 Emilio 
A. Vital Brazil,2 Tim Erdmann,1 Sara Capponi,1 and James L. Hedrick1 

1. IBM Research—Almaden, San Jose, CA, United States.
2. IBM Research—Brazil, Rio De Janeiro and Sao Paulo, Brazil

The integration of artificial intelligence (AI) and automated experimentation into research workflows for 
chemistry and materials has been heralded to reduce the tedious, labor-intensive nature of experimental 
research. Within the domain of polymers, there is promise that advances in these areas can significantly 
reduce the traditionally extended timelines needed to discover, develop, and commercialize new 
materials—particularly given the massive design space arising from the available structural and 
architectural diversity. However, there exist significant gaps between the increasing capabilities of 
automated synthesis platforms and AI systems and their practical implementation within experimental 
research workflows for polymer chemistry. To address these gaps and strive to realize an intelligent 
platform for polymer discovery, we have organized our research into three separate thrusts: 1) 
automated continuous-flow synthesis of polymers, 2) development of new foundation models for 
polymeric materials, and 3) integration of foundation models within multi-agent systems to facilitate 
human-AI interaction. 

Continuous-flow synthesis is an excellent platform for facilitating automated experimentation within 
polymer chemistry. Controlling the polymer composition and architecture through a combination of 
reactor design and adjusting experimental conditions in real-time, offer capabilities to prepare highly 
tailored materials that would be difficult to prepare using batch reactors. Continuous-flow processes, 
however, can be complicated by extended residence times as a result of the higher dilution typically 
needed. This is problematic for automated experimentation as it can result in smaller throughput and 
increased potential for forming clogs. These issues can be mitigated by using highly active 
polymerization catalysts, which can reduce the residence times to milliseconds while maintaining a high 
degree of control over the molecular weight distribution and end group fidelity (Fig. 1A) [1,2]. 
Moreover, the combination of performant catalysts with sophisticated automation software facilitates the 
implementation and control of complex reactor designs—allowing multiple reactors to be run in parallel 
to scan polymer composition space and extract kinetic data on different catalyst systems. 

The use of automated continuous-flow platforms necessitates integration of predictive models for 
polymer properties within the workflow, allowing a reduction in the overall experiment load and 
focusing on promising regions of composition space. Most models, however, are limited to a narrow 
scope of polymer types and only a few are generalizable to multiple prediction tasks. To accommodate 
the development of an improved foundation for polymer property prediction, we developed new 
methods of polymer representation using a domain-specific language, Chemical Markdown Language 
(CMDL)—allowing for accurate representation of the diversity of polymer architectures (Fig. 1B) [3]. 
Evaluation of this approach for catalyst and polymer design showed immense promise for the use of this 
representation system with transformer models. Further development of the representation system 
allowed for greater compatibility with existing polymer datasets, enabling the development of a new 
foundation model of polymeric materials [4]. This new 289 M parameter model demonstrated state-of-



  
 

          
          

          
       

           
      

     
          

     
          

           
        

      
 

 
 

     
   

     
  

    
   

 

 
             

         
          

  

the-art or near state-of-the-art performance on a variety of property prediction benchmark tasks. 

Facilitating human–AI interactions is the key component for integration of AI systems within 
experimental workflows. Currently, the use of agentic systems powered by large language models 
(LLMs) provide immense capabilities in translating tasks defined by users using natural language into 
actionable plans for materials design and experiment execution. However, in highly technical domains, 
such as chemistry and materials, LLMs frequently suffer from a lack of depth of knowledge as well as 
restricted ability to accurately analyze chemical structures. To correct for this, we have developed 
methodology to facilitate structure and characterization data focused retrieval-augmented generation 
(RAG), allowing the LLM to receive relevant information for complex research tasks. Embeddings from 
chemistry and polymer foundation models were leveraged to create structure-focused vector databases, 
allowing facile structural similarity queries [5]. For characterization data, structure and image 
embeddings were leveraged to create a hybrid vector database collection capable of handling retrieval of 
either similar polymer structures or characterization data. These capabilities were integrated and 
benchmarked within an agentic workflow, demonstrating both their utility and the ability to leverage 
open-source LLMs to achieve comparable or better performance relative to closed-source models [6]. 

References 
[1] Lin, B., Hedrick, J. L., Park, N. H. & Waymouth, R. M. J. Am. Chem. Soc. 141, (2019), p. 8921. 
[2] Lin, B. et al. Macromolecules 53, (2020), p. 9000. 
[3] Park, N. H. et al. Nat Commun 14, (2023), p. 3686. 
[4] Soares, E., Park, N., Brazil, E. V., Shirasuna, V. Y. NeurIPS (2024). 
[5] Park, N. H., et al. arXiv (2024) https://doi.org/10.48550/arXiv.2408.11793. 
[6] Callahan, T. J., Park, N. H., Capponi, S. arXiv (2025) https://doi.org/10.48550/arXiv.2502.19629. 

Figure 1. A) Schematic of a continuous-flow reactor used to synthesize L-lactide homopolymers. B) 
Example of a polymer graph expression written in CMDL (I) and the compiled output as serialized 
graph used within fine-tuning tasks for transformer models (II). C) Overview schema on agentic 
workflow utilizing semantic structural and image capabilities for RAG tasks. 

https://doi.org/10.48550/arXiv.2502.19629
https://doi.org/10.48550/arXiv.2408.11793


Towards Machine-Learning Enabled Automated Analysis of Heterogeneous 
Nanomaterials  
 
Mary Scott1,2,* 
 
1 Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 
USA. 
2 Molecular Foundry, Lawrence Berkeley National Lab, Berkeley, CA, USA.  
* Corresponding author: mary.scott@berkeley.edu  
 
 

Automated and autonomous characterization experiments are playing increasingly important 
roles in workflows for the discovery, design, and synthesis of materials. Recent work has illustrated 
successful robotic synthesis of nanomaterial populations [1, 2]. While the synthesized material is 
typically optimized for bulk performance and properties, individual particles are expected to exhibit 
heterogeneity.  Given the importance that local, atomic-scale features play on nanomaterial properties, 
methods such as transmission electron microscopy (TEM) are needed to understand the relationship 
between structure and function in individual particles. Development of high throughput and automated 
TEM data taking and analysis will be critical to incorporating this technique into autonomous synthesis 
and characterization workflows.  

Deep learning approaches to interpret scientific data are the subject of intense recent study. 
Specifically, recent work illustrated the successful use of convolutional neural networks (CNNs) as part 
of high throughput image analysis pipelines [3, 4]. In these examples, CNNs are used reduce input high 
resolution TEM imagine data to distributions of size and shape. This approach has the potential to relate 
the size and shape statistics of a nanoparticle population to bulk properties and synthetic protocols. 
Previous work has illustrated that CNNs require special consideration to avoid bias when implemented 
for TEM data analysis, and may not generalize well under differing experimental conditions [5, 6]. For 
example, data curation, CNN architecture, and performance metric choice can all play a role in the 
accuracy of CNN predictions on EM data. Customizing CNNs for scientific data can therefore be 
challenging, especially when dataset sizes are small. 

Here, we present a systematic study of application of CNNs to EM data. We consider how 
architecture influences image classification and segmentation, and illustrate the role that data curation 
can play on the tradeoff between flexibility and accuracy of CNNs. We then show application of these 
methods to a large-scale synthesis study of Cobalt oxide nanoparticles[7]. By varying experimental 
parameters during synthesis, we produce cubic-shaped cobalt oxide nanoparticles with varying sizes, 
degrees of corner truncation, and face convexity. We illustrate successful strategies for application of 
CNNs to the hundreds of thousands of nanoparticles imaged in this study, and discuss error metrics and 
interpretation of the CNN results. The resulting statistical distributions of the nanoparticle enable us to 
understand the role of synthetic parameters on nanoparticle structure and shape, which ultimately will 
influence the catalytic behavior of these particles. These results provide intuition as to how neural 
network workflow design choices affect TEM image analysis, and provide guidance for researchers 
using CNNs for analysis of scientific images. Ultimately, this work is an example of large-scale EM 
analysis of hundreds of thousands or nanoparticles synthesized under a variety of conditions enabled by 
machine learning, and is an important step towards incorporating high throughput EM analysis into 
automated and autonomous nanomaterial synthesis workflows. 

 



 
In particular, the degree of sample heterogeneity plays an important role: to obtain adequate 

statistical sampling of images of nanomaterials, the number of observations needed varies depending on 
the variety of features present. This is captured by the concept of ‘representativeness’, a property that 
describes whether a subset of data that captures the properties of the entire dataset. Even for seemingly 
self-similar populations of nanomaterials, large sample sizes are needed to observe subtle trends in size 
and shape statistics [7].  

This work illustrates implementation of machine learning approaches for automated analysis of 
large nanomaterial datasets, with an emphasis on statistical sampling, proper curation of training data, 
and strategies to avoid bias in analysis. Ultimately, this work highlights important considerations for 
automated data analysis when sample or experimental conditions may be changing or unknown [8]. 
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Real-time Autonomous Combinatorial Experimentation – Nimble and Agile 
Approaches to Self-driving Laboratories 

Ichiro Takeuchi1 

1. Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742

Our philosophy for autonomous materials science is to build on existing capabilities of experimental 
instruments and bootstrap self-navigating systems in nimble and agile ways. Many materials synthesis 
and characterization tools around us are already sophisticated and automated. Automated is not 
autonomous, but automation is an important prerequisite for making autonomous systems. For example, 
by externally controlling beamline end-station instruments, we have previously demonstrated 
autonomous synchrotron diffraction [1] and neutron diffraction [2] (Fig. 1). In both cases, we were 
successful in reducing the overall number of experimental iterations and/or measurements by significant 
margins. We have also developed an inexpensive educational tool, which performs simple autonomous 
chemistry experiments [3]. 

The combinatorial library platform is conducive to active learning-driven autonomous experimentation. 
The array format with which materials samples of different compositions are laid out on combinatorial 
libraries facilitates sequential exploration of samples in a straightforward manner. Ability to synthesize 
and characterize arrays of materials sequentially one after another and in closed-loops can greatly 
enhance the efficacy of autonomous experimentation. Sometimes the exercise of self-driving 
combinatorial experimentation can be focused just on the characterization aspect: fabrication of some 
libraries such as thin-film composition spreads can be carried out quickly and without difficulties, but it 
is the quantitative evaluation of physical properties of interest which can be time and effort consuming 
for each individual sample. In such instances, it is effective to let the Gaussian processes dictate the 
sequence of measurements on the library. For example, in a previous experiment, we were able to find 
the composition of a phase change memory material with the largest bandgap contrast between 
amorphous and crystalline phases on a pre-fabricated ternary thin-film composition spread after 
measuring only a fraction of the entire composition range covered on the spread [1]. 

In another example, we have demonstrated real-time self-driving continuous cyclical interaction of 
experiments and computational predictions for materials exploration. In particular, we have performed 
rapid mapping of a temperature-composition phase diagram, a fundamental task for the search and 
discovery of new materials. Thermal processing and experimental determination of compositional phase 
boundaries in thin films are autonomously interspersed with real-time updating of the phase diagram 
prediction through the minimization of Gibbs free energies. The workflow was able to accurately 
determine the eutectic phase diagram of the Sn-Bi binary thin-film system on the fly from a self-guided 
campaign covering just a small fraction of the entire composition - temperature phase space, translating 
to a 6-fold reduction in the number of necessary experiments. This study demonstrated for the first time 
the possibility of real-time, autonomous, and iterative interactions of experiments and theory carried out 
without any human intervention [4]. 

We have also recently demonstrated autonomous control of unit cell-level growth of functional thin 
films implemented in combinatorial pulsed laser deposition. Dynamic analysis of reflection high-energy 
electron diffraction images is used to autonomously navigate multi-dimensional deposition parameter 



         
           

       
      

          
 

 
  

      
       
     

   
 

 
 

 
  

 
 

  
 

 
  

 
 

 
 

        
     

  

 
 

space in order to rapidly identify the optimum set of growth parameters for fabricating the targeted 
materials phase. I will also discuss other autonomous experimentation projects we are carrying out 
including metal additive manufacturing. This work is performed in collaboration with M. Lippmaa, H. 
Liang, A. G. Kusne, A. McDannald, and J.-C. Zhao. This work is funded by NIST, ONR, SRC, and 
Department of Energy, Office of Science, Office of Basic Energy Sciences Energy Frontier Research 
Centers program under Award Number DE-SC0021118. 
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Figure 1. (left) CAMEO: Closed-loop autonomous materials exploration and optimization [1]; (middle) 
Autonomous neutron diffraction explorer (ANDiE) [2]; (right) LEGOLAS: LEGO based Low-cost 
Autonomous System for Education [3] 



Integrating Automation Tactics and Machine Learning to Direct Nanoscale and 
Atomic Scale Transformation Experiments 
 
Raymond R. Unocic1, Caitlyn E. Obrero1, Kevin M. Roccapriore2, Stephen Jesse3, Ayana Ghosh4, 
Maxim Ziatdinov5, Sergei V. Kalinin6, Matthew Boebinger3 
 
1. North Carolina State University, Department of Materials Science and Engineering, Raleigh, NC USA 
2. AtomQ, Knoxville, TN USA 
3. Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN USA 
4. Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN USA 
5. Pacific Northwest National Laboratory, Richland, WA USA 
6. Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN USA 

Recent advances in autonomous experimentation are rapidly transforming the capabilities of direct-write 
nanofabrication, enabling precise manipulation of matter from the atomic to nanoscale with an 
unprecedented degree of control. At the forefront of this transformation is the integration of automation 
and machine learning (ML) with scanning transmission electron microscopy (STEM)-based direct-write 
approaches, which together are redefining the way materials can be engineered and modified at the 
smallest length scales. In this work, we demonstrate a comprehensive methodology that couples real-
time feedback-controlled STEM imaging with ML-based image analysis to guide atomic-scale 
transformations with high spatial and temporal resolution. Building upon prior developments in atomic 
defect engineering in two-dimensional (2D) materials,1–4 and leveraging high-throughput, deep learning-
enhanced STEM workflows, we deploy a closed-loop experimental platform.5 This system employs 
deep convolutional neural networks (DCNNs) to classify evolving atomic configurations during 
dynamic electron-beam-induced transformations, enabling on-the-fly adjustment of beam irradiation 
parameters.4,6 Such adaptive control allows for precision operations, including layer-by-layer material 
removal, the formation of sub-nanometer pores, and the stabilization of transient metastable phases 
within Ti₃C₂Tₓ MXenes.7 

In addition to beam-driven modifications in vacuum, we extend the concept of direct-write 
nanofabrication to hydrated environments using liquid-phase electron beam lithography.8 This approach 
allows for chemical and structural manipulation from liquid precursors, expanding the scope of material 
systems and phenomena accessible to in situ experimentation. Our in situ observations under varying 
thermal and electron beam irradiation conditions reveal key mechanisms governing atomic mobility and 
beam-matter interactions, aligning with previously reported behaviors in thermally activated edge 
reconstructions in 2D transition metal dichalcogenides (TMDs). By combining real-time analysis, 
automated feedback control, and multimodal environmental capabilities, this work establishes a robust 
platform for autonomous, atomically precise fabrication. The resulting system serves as a powerful 
toolset for materials discovery, defect engineering, and dynamic structural modulation—offering new 
opportunities for scientific exploration in both fundamental and applied research contexts. 
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Advancing Ionomer-Based Water Electrolysis: Integrated Characterization, 
Foundation Models for Segmentation, and Autonomous Optimization 
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Low-temperature electrolysis using single-ion-conducting polymers (ionomers) offers strong prospects 
[1] for dynamic, modular operation and enhanced efficiency through differential pressure strategies. 
Among hydrogen production technologies, proton exchange membrane water electrolyzers (PEMWEs) 
stand out due to their enhanced operation, high conversion efficiency, high purity hydrogen (>99.99%), 
and rapid dynamic response. However, key challenges persist, hindering broader commercialization, 
notably the reliance on catalyst materials, thick durable separators/membranes, and limited fundamental 
understanding of complex interfacial phenomena at the ionomer/catalyst interface, particularly related to 
the oxygen evolution reaction (OER). Fundamental research into iridium oxide [2] is essential to reduce 
catalyst loading while maintaining performance. Iridium oxide catalysts represent 26–47% of the total 
system cost, primarily due to iridium scarcity. Commercial iridium oxide catalysts typically exist as 
amorphous IrOx or crystalline IrO2, each exhibiting trade-offs between catalytic activity and stability. 

Our current work at CIWE (Center for Ionomer-based Water Electrolysis) [3] directly addresses these 
challenges by combining detailed experimental characterization with advanced computational modeling 
and artificial intelligence (AI) techniques. We have explored novel physical and electrochemical analyses 
of new iridium oxide catalysts (amorphous IrOx and crystalline IrO2 from Ishifuku Metal), employing 
scanning electron microscopy using focused ion beam (FIB-SEM), transmission electron microscopy 
(TEM), Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and 
more. These comprehensive characterizations reveal distinctive structural properties; notably, crystalline 
IrO2 displays needle-like morphologies with significantly greater specific surface area (~110 m² g⁻¹) 
compared to amorphous IrOx (~50 m² g⁻¹) [2]. Electrochemical performance evaluations across varied 
catalyst loadings demonstrate important differences: amorphous IrOx exhibits distinct redox peaks 
indicative of surface activation processes occurring after extensive cycling, whereas crystalline IrO2 
primarily shows double-layer capacitance behavior at lower voltages. According to Zenyuk’s laboratory 
latest results [2], both catalysts demonstrate competitive polarization performances, with voltages of 1.92 
V (amorphous) and 1.94 V (crystalline) at 5 A cm⁻² for a loading of 0.85 mg cm⁻², accompanied by low 
Tafel slopes (43.8 mV dec⁻¹ for amorphous IrOx, 53.7 mV dec⁻¹ for crystalline IrO2). 

Key scientific questions currently pursued by our team involve the application of computer vision 
techniques and machine learning (ML) tools. Specifically, we investigate whether AI/ML algorithms can 
improve materials characterization through accurate segmentation methods and morphological 



    
   

       
       

       
 

  
          

     
         

     
     

     
    

      
         

 
 

    
         

   
    

 
  

     
    

      
    

        
 

  

 
  

  
 

 

 

 

quantification, addressing challenges such as measuring porosity, which is complicated by interference 
from adjacent layers, precise determination of layer thickness, assessing homogeneity, and detecting 
defects such as long cracks and bends. Additionally, qualitative analysis using advanced 3D visualization 
tools is being evaluated to determine if such immersive visualization methods can accelerate algorithm 
development and provide deeper insights into material structure and behaviors beyond traditional 
performance metrics like 2D plots of small sections, Dice coefficients and F1-scores. 

We have investigated the use of the Segment Anything Model (SAM), a powerful foundation model for 
computer vision, to perform zero-shot segmentation in FIB-SEM and cryo-TEM imaging. Zero-shot 
methods like SAM are valuable due to their ability to generalize without requiring extensive labeled 
datasets. To enhance the performance and applicability of SAM in segmenting complex EM datasets, 
Gaussian Process (GP) optimization has been considered for efficient hyperparameter tuning. GP allows 
a systematic scan through hyperparameter spaces, quantifies uncertainty, and optimizes model 
performance, ensuring robust segmentation outcomes suitable for high-resolution structural analyses, and 
control for realization of the digital twin. Additionally, Gaussian mixture models (GMM) are being 
explored alongside SAM for comparative evaluation, and it will provide insights into alternative statistical 
approaches for segmentation and morphological characterization. 

Our integrated approach also leverages domain-specific analytics and immersive visualization 
technologies, such as ASCRIBE Virtual Reality platform [4] powered by Unreal Engine and Meta Quest 
headsets, to intuitively monitor and interpret complex multimodal datasets in real-time. AI-driven 
autonomous decision-making frameworks using Gaussian Processes and zero-shot computer vision based 
on foundation models are likely to enhance experimental agility and adaptive optimization. 

Despite these advancements, significant hurdles remain, including lack of data annotation for accuracy 
validation, complex data integration, noise suppression, parallelization of intensive tasks, such as 
parameter optimization, etc. Continued research [5] will focus on refining analytical and computational 
methodologies, reducing catalyst usage, and broadening the deployment of autonomous systems. 
Addressing these needs will further fundamental insights into ionomer-based interfaces and accelerate the 
transition toward more efficient, durable, and economically viable electrolyzer technologies. 

[1] Bird et al, “PFSA-Ionomer Dispersions to Thin-Films: Interplay Between Sidechain Chemistry and 
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         Challenges in self-driving laboratories: curiosity-based explorations, and the need 
for human-in-the-loop workflows for maximizing robustness and prior knowledge 
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1. Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN USA 
2. Department of Physics, University of North Carolina, Chapel Hill NC USA 

Self-driving laboratories promise to tremendously improve the rate of progress of the discovery and 
optimization of molecules and materials [1]. This is both from the increase in automation of the process, 
enabling many more experiments to be performed, as well as the integration of machine learning 
methods, such as Bayesian optimization algorithms (BO) that can rapidly find promising regions of the 
parameter space. This combination has led to an explosion of interest within autonomous and self-
driving laboratories, and a wealth of literature reviews are now available on the topic [2,3]. 
At the Center for Nanophase Materials Sciences (CNMS) at Oak Ridge National Laboratory, we have 
been creating autonomous laboratories that automate scanning and electron probe microscopes as well 
as synthesis tools such as pulsed laser deposition (PLD) systems. In this talk, we will explore several 
challenges related to algorithms for autonomous synthesis and characterization and explain why a 
human-in-the-loop workflow, with human and AI collaboration, is required to maximize efficiency and 
robustness. 

Specifically, we will begin with an exploration of automated synthesis and the need for human 
oversight, which can be provided through gated active learning approaches. In our autonomous pulsed 
laser deposition platform, it is possible to grow 2D materials via PLD and measure their optical 
properties via laser reflectance and gauge the quality of the films via in-situ Raman spectroscopy. This 
was used as the signal to optimize the PLD conditions (energy of the two lasers, the temperature of the 
substrate, and the pressure of the background gas in the chamber). Using traditional Bayesian 
optimization, it was shown that it was possible to find an optimal synthesis recipe in under 100 synthesis 
experiments [4]. However, this was beset by many ‘failed’ experiments where the growth regime was 
such that the film quality was poor. 

Upon inspection, one of the challenges encountered was that the defined scalarizer function used for the 
optimization relied on the quality of the fitting of certain Raman peaks, and if the spectrum quality was 
poor, this would result in poor quality data fed into the BO algorithm, leading to sub-par performance. 
This speaks to the trouble with scalarizer functions in general which must be apriori defined: when there 
are unknowns in a true experiment, the quality of the output may deviate, and a method to tune the 
experimental trajectory on-the-fly is required. Thus, a new algorithm, termed “Dual-GP”, consisting of a 
standard BO loop, as well as a secondary loop that includes a quality inspection that can either be 
achieved via a human operator, or some other method (e.g., an ML agent, some other traditional 
analytics based method, etc.) was proposed [5]. In the full optimization, the secondary quality 
assessment is used to confine the regions of the parameter space to the parts that are most promising, 
and to neglect the parts where the data is deemed of poor quality. This was shown to significantly 
improve the overall efficiency of the BO and reduce sample wastage, thereby increasing robustness in 
autonomous synthesis workflows. 
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