

Multiple Benefits Case Studies

Case 1. [**2006 Rohm and Haas**](#) – Furnace Replacement Project Reduces Operating Costs and Improves Production at a Chemical Plant

Summary: This chemicals producer **process heating** energy efficiency project reduced operating costs and improved material/chemical reclamation process which improved throughput.

Reference Link: <https://docs.nrel.gov/docs/fy06osti/39276.pdf>

Case 2. [**2001 Fetzer Vineyards**](#) – Heat Exchange System Improvement Cuts Utility Costs and Improves Production at a Winery

Summary: This company implemented a project to improve its **process heating**. The project enabled the winery to reduce its annual natural gas consumption and water consumption, leading to lower utility costs. The project also increased productivity, reduced material waste and reduced labor costs.

Reference Link: <https://www.osti.gov/servlets/purl/1216015>

Case 3. [**2003 American Water Heaters**](#) – Compressed Air System Optimization Project Reduces Utility Costs and Improves Production at Water Heater Plant

Summary: An example of **compressed air** system inefficiency that adversely impacted production equipment and caused excessive maintenance requirements, all of which were resolved through energy efficiency measures and reducing operating costs.

Reference Link: <https://docs.nrel.gov/docs/fy04osti/33648.pdf>

Case 4. [**2002 John H. Harland Corporation**](#) – Compressed Air Project Improves Efficiency and Production at Harland Publishing Facility

Summary: This publishing company's printing machine re-configuration reduced **compressed air** demand, lowered utility expenses, and avoided the need for new compressor purchases. Multiple Benefits include increased product quality, decreased production cycle time, and reduced maintenance.

Reference Link: <https://docs.nrel.gov/docs/fy02osti/31713.pdf>

Case 5. [**2001 Mead- Johnson Nutritionals**](#) – Compressed Air System Renovation Project Improves Production at a Food Processing Facility

Summary: An example of an **air compressor** optimization project, which resulted in reduced operating costs and improved productivity. Also, this project avoided an unnecessary new compressor purchase.

Reference Link: <https://docs.nrel.gov/docs/fy01osti/30231.pdf>

Case 6. **2001 Solutia, Inc.** – Compressed Air System Optimization Reduces Operation Costs and Improves Production at a Synthetic Textile Plant

Summary: This synthetic textile plant improvement project on a **compressed air** system improved the efficiency of the plant's compressed air system, leading to substantial cost reductions, better product quality, and lower maintenance costs.

Reference Link: <https://docs.nrel.gov/docs/fy01osti/30230.pdf>

Case 7. **2005 CEMEX** – Cement Manufacturer Reduced \$168,000 Utility Costs and \$30,000 Maintenance Costs Annually with a Motor Retrofit Project

Summary: This cement manufacturer reduced operating and maintenance costs while improving productivity with their **motors** retrofit project.

Reference Link: <https://docs.nrel.gov/docs/fy06osti/38223.pdf>

Additional questions? Contact: multiple.benefits@nlr.gov