

Exploring the Chemical Synergies Between Capture and Conversion of CO₂

DAVID J. HELDEBRANT

Pacific Northwest National Laboratory

Outline

- ► CO₂ capture chemistry
- Thermocatalytic CO₂ conversion chemistry
- Historical integration
- Designing and TEA of integrated processes
- Opportunities
- Barriers and research needs

CO₂ Capture and Utilization Today

Point-source CO₂ capture and utilization deliver concentrated CO₂ streams for EOR.

The Case for Integrating CO₂ Capture with Conversion

The energy cost of collecting, concentrating and purifying CO_2 is not free.

Global CO₂ demand (80Mtpa) is met via extraction from geological reservoirs (e.g. Bravo Dome), while anthropogenic sources exceed 18,000Mtpa.¹

When natural supplies are exhausted, CO_2 must be captured before use.

- Natural CO₂: \$20/tonne²
- Direct air capture: \$1,000-100/tonne^{2,3}
- Flue gas: \$100/tonne²
 - Capture: -85 kJ/mol
 - Compression: -12 kJ/mol
 - Transport: Variable
- 1) "Accelerating the uptake of CCS: industrial use of captured carbon dioxide." Global CCS Institute, 2015
- 2) Herzog et al. PNAS, **2011**, 108, 20428–20433. 3) Joule, **2018**, 2, (8), P1573-1594, 4) Image from NETL.gov

The Case for Integrating CO₂ Capture With Conversion

Performing catalysis on CO₂ captured in solution avoids the process energies with capture and compression.

Image inspired by Stolarof, LLNL

Pacific

How Nature Does Reactive Capture and Conversion

Photosynthesis has perfected reactive capture and conversion over millennia.

Nature Has Long-Perfected CO₂ Capture and Conversion

Biotin transfers anionic carboxylates in solution to grow fatty acids via the Calvin cycle.

Biotin carboxylase subunit of *E. coli* acetyl-CoA carboxylase

Catal. Sci. Technol., 2014, 4, 1482-1497

Products That Can Be Made From CO₂

reduction of CO₂ **RNH**_a RCHO ġ. HCO₂H PhSiH RR'NH CO_2 PhSiH₃, RNH SnR₂ CO₂H CO₂H SnR₂ CO_oMe

Valorizing CO₂ introduces market drivers to implement CCS.

O=C=O

Numerous products can be made from CO₂, but reactive pathways are limited.

R-O-C-O⁻

- All chemical reactions of CO₂ proceed via nucleophilic attack on the central carbon or electrophilic coordination to the oxygens.
- Historical efforts changed catalyst, reagent, T & P, here, we are changing the CO₂

carbonates and carbamates

carboxylations

Reaction Advantages of Converting Captured CO₂

Condensed-phase reactions provide energy and cost benefits and new reactive landscapes.

- Same solvent used for both steps
 - Catalytic with respect to solvent
- Multiple products available by changing reagent feed
- Catalysis at atmospheric (CO_2) pressures CO_2 concentration >5 wt% in solution at 1 atm
 - Potentially faster liquid phase kinetics
- Potentially lower free-energy pathways
 - Rehybridization complete, similar intermediates
 - High dielectric provides stabilization for polar transition states $H_v C_x$
- Heterogeneous or homogeneous pathways viable Direct coordination to catalysts

Pd Chelation of "captured" of "captured" CO_2 (L) CO_2 to metal surfaces

Hydrogenation of CO_2 with H_2 is Exothermic but Endergonic. Thermal Regeneration of CO_2 capture is endothermic.

- ► $CO_2(g) + H_2(g) \rightarrow HCOOH(I)$
 - DG° = 32.9 kJ mol⁻¹
 - DH° = -31.2 kJ mol⁻¹
 - DS° = -215 J K mol⁻¹

Base Makes the Reaction Exergonic CO_2 (g) + H_2 (g) + NH_3 (aq) $\rightarrow HCO_2^- NH_4^+$ (aq)

- DG° = -9.5 kJ mol⁻¹
- DH° = -84.3 kJ mol⁻¹
- DS° = -250 J K mol⁻¹

Hydrogenation of captured CO_2 is downhill energetically.

Pressures Necessary To Reach $H_2 + CO_2 = HCOOH Equilibria^*$

Water-lean capture solvents *are* ILs!

The First Synergies of Capture and Conversion

Noyori & Jessop noted enhancement in yield and rate when alcohols and amines are added.

$$CO_2 + H_2 \xrightarrow{Ru^{\parallel} catalyst} HCO_2 H$$

J. AM. CHEM. SOC. 9 VOL. 124, NO. 27, 2002, *Inorganic Chemistry*, Vol. 41, No. 6, 2002

Pacific

Condensed-Phase Methanol Synthesis Exploits Similar Chemical Reactivity

The same chemicals that capture CO_2 also promote conversion.

Addition of amine or alcohol additives to homogeneous catalysis promotes the formation of methanol via formate ester and formamide intermediates.

Pacific Northwest

Reduction of CO₂ Could be Catalytic With Respect to Capture Solvent, but alkylcarbonate or carbamate reactivity had not yet been verified.

*Complex chosen to compare reactivity of alkylcarbonates to that of CO_2

Green. Chem. (2016), 18, 4871-4874.

Captured CO₂ and CO₂ Differ in Reactivity

Alkylcarbonates appear to be reduced by $Ru(PNP)_2H_2$ via an inner-sphere reduction while CO_2 goes through an outer-sphere.

Pacific

• Only *cis*-Ru(PNP)₂(H)₂ was consumed in the reduction of hexylcarbonate

Free CO_2 consumes *cis*-Ru(PNP)₂(H)(L) and *trans*-Ru(PNP)₂(H)₂

Rates of hydrogenation are faster, suggesting lower E_{act}

Green. Chem. (2016), 18, 4871-4874.

Captured CO₂ and CO₂ Differ in Reactivity

Alkylcarbonates may offer different free-energy landscapes offering potentially faster kinetics.

Pacific

In-Situ ¹³C MAS NMR Enables an Unprecedented View of Speciation and Kinetics of Catalytic Reactions

Pacific Northwes

Operando catalysis supports proposed mechanism of hydrogenation.

*Results led to TCF project with SoCalGas

Catal. Sci. Technol. 2018, 8, 5098-5103

Integrated Capture and Conversion of CO₂ to Methanol (ICCCM). TCF-19-17862

Process configuration for the ICCCM technology

- Excess H₂ is then separated in a low-T flash drum and recycled back to reactor
- Liquid phase product from the H₂ recovery drum contains methanol, CO₂-lean CO₂BOL solvent, and water
- The non-volatile solvent is recovered in flash drums at lower pressure and recycled back to the absorber
- Methanol and water is pumped to a distillation column designed to produce methanol 99.6% purity

Integration provides cost and energy benefits.

- Energy saving features of the ICCCM process:
- Combined units of operation and solvent
- Hydrogenation of CO₂ to methanol is exothermic partially offsetting endothermic CO₂ release
- Heat recovered from the reactor can be used to generate low-pressure steam which can be used in other parts
 of the process, and as a utility
- Condensed product bypasses mechanical compression of CO₂

Techno-economic Assessment (TEA) for Integrated Processes Like ICCCM

Integration enables competitive market pricing with 45Q and renewable fuel standards.

- Preliminary TEA performed on two different flue gas sources: a 50 MW SOFC power plant and a 550 MW NGCC plant, and baselined against a conventional natural gas-tomethanol plant.
- H₂ price set at \$2/kg
 - 1) Methanol from natural gas by the ICI copper-based catalytic process (PEP Yearbook, 2014).
 - 2) Key modeling assumptions: 90% capture of CO₂ from flue gas, 5.3 mol/mol H₂/CO₂ target at reactor inlet, 120 °C reactor temperature, 25 bar reactor pressure, equilibrium reactor performance and methanol selectivity of 100%, reactor space velocity of 0.9 kg/h MeOH/ liter of catalyst, flue gas compositions reported by ⁸ and ⁹ used for the respective SOFC and NGCC cases.
 - 3) Carnot efficiency is used to convert thermal energy to electricity.
 - 4) Defined as heating value of methanol over total energy fed into the system (H₂, steam and electricity). Carnot cycle efficiency is used to convert electricity to thermal energy.
 - 5) Current industrial price of methanol. H_2 price and 45Q carbon credit are set to \$2/kg (DOE, 2015) and \$35/tonne CO₂¹⁰.
 - 6) Based on Aspen Process Economic Analyzer.
 - 7) Assuming 15% ROI.

	Reference Technology	Proposed Technology ⁽²⁾	
	Conventional Natural Gas based Syngas ⁽¹⁾	NGCC- Based Flue Gas (550 MW)	SOFC- Based Flue Gas (50 MW)
Capacity (millions of gallons MeOH /yr)	329	329	23
Energy into system (%, HHV)			
Natural gas	99.6		
Hydrogen		77.4	83.2
Steam	0.0	13.2	15.0
Electricity	0.4	9.4	1.8
CO_2 concentration at inlet (mol %)	NA	4.0	29.0
CO_2 conversion in reactor (%)	NA	70	70
H ₂ consumption (mol H ₂ /mol MeOH)	NA	3.1	3.1
Equivalent work of capture/ conversion (kJ ₂ /mol CO ₂) ⁽³⁾	NA	43.9	35.4
Overall energy efficiency (%, HHV) ⁽⁴⁾	65.4	58.3	66.4
Production costs (\$/gallon MeOH)			
Raw Materials ⁽⁵⁾	0.53	1.27	1.27
Carbon Credits ⁽⁵⁾	0.00	0.15	0.15
Utilities	0.02	0.20	0.16
Total Fixed Capital (\$/gal MeOH) ⁽⁶⁾	0.32	0.22	0.28
Minimum MeOH Selling Price (\$/gal) ⁽⁷⁾	1.29 ⁽⁵⁾	1.89	2.05

Reagent (H₂) costs drive economics and market competitiveness.

Commercial Viability for Integrated Processes Like ICCCM

- Given ~\$1/kg H₂ both ICCCM processes compete with current methanol market prices
- Q45 carbon credit (\$35/tonne CO₂) was considered in the economics but additional carbon taxes could facilitate economic viability

- Hydrogen co-feed is expensive. However, in the ICCCM system hydrogen serves an indirect energy source to drive the carbon capture process, versus steam or electricity.
- Modular distributed-scale processing platforms, which in turn could enable distributed applications, such as the separation and conversion of CO₂ from landfill, waste-water treatment, and manure off-gas.
- Stranded hydrogen sources are also more likely to be co-sourced when considering distributed processing, which could enable lower cost/ renewable hydrogen supplies in many applications.

H₂ cost sensitivity analysis

Opportunities and Critical Challenges in Merging CO_2 capture and CO_2 utilization.

"Reports that say that something hasn't happened are always interesting to me, because as we know, there are known knowns; there are things we know we know. We also know there are known unknowns; that is to say we know there are some things we do not know." *

Known Knowns

- Catalytic with respect to capture solvent
- New reactive landscapes
- Adaptable to post-source, direct air, blue carbon sources
- Modular process with multiple product streams (change co-feed)

Known Unknowns

- Chemical tolerance (oxidative then reductive environment)
- Catalyst lifetime/tolerance of O₂ etc...
- Logistics of delivering reagents and transporting products
- Market size and emission reduction potential
- Lifecycle of CO₂ produced products

Unknown Unknowns

Barriers and Research Needs for Capture and Conversion

"Basic research is what I'm doing when I don't know what I am doing." *

- US Department of Energy Leadership
- National Laboratory, academia Industry partnerships
- Process intensification
- Market drivers and incentives
- Environmental Permitting
- Capital Investment and Risk Abatement
- NIMBY, NUMBY, BANANA, CAVE

Acknowledgements

Solvent-Based Capture FWP's 72396, 70924

<u>Catalysis of Captured CO₂</u> BES Early Career FWP 67038

Integrated ICCCM TCF-19-17862

Exploring the Chemical Synergies Between Capture and Conversion of CO₂

DAVID J. HELDEBRANT

