Managing Selective C-H Bond Formation with CO₂

Department of Chemistry, University of California, 1 Shields Ave, Davis CA 95616

Louise A. Berben

Introduction

- CO_2 reduction to formate, methanol, methane promises carbon Or neutral fuels
- H₂, CO or HCOO⁻ formation are 2eprocesses with similar energy input
- Both CO and H₂ formation are more likely when the catalyst is very reducing

Electrocatalysis

Achieving Selective C-H Bond Formation

Thermodynamic Considerations:

- Hydricity: $M-H \iff M^+ + H^-$
- Catalyst hydricity should be in the correct range favor product to a thermodynamically: H_2 vs HCOO⁻
- H_2 evolution formate window (H_2O) observed (H_2O)

 $\Delta G^{\circ}{}_{\mathsf{H}}{}^{\mathsf{-}}$

formate production not thermodynamically possible (H₂O)

Catalysis may be low absent kinetic control

Kinetic Considerations:

- (Step 3) is the RDS
- TOF limited by solubility of CO₂ in H₂O
- Eyring analysis reveals transition ordered an
- in water

(Left) Electrolysis plots showing superior catalyst performance at neutral pH (Right) Current density and formate produced over 24 hrs remained constant.

Homo/Heterogeneous Catalysis

- Heterogeneous catalysts allow easier product separation
- Surface coverage of 7.74 \times 10⁻¹¹ mol cm⁻² is ~50% of maximum theoretical value

(left) Charge vs time plot recorded for **1**-GC under CO₂, blue; and blank, red. (center) **1**-TrGC immobilized on GC. (right) (blue) CV of **1**-TrGC in 0.3 M Bu_4NBF_4 THF solution. Red is baseline.

- Under 1 atm CO_2 , formate produced with 75% FE; 52,500 TON.
- Linear relationship between onset potential has $m \cong -59$ mV, suggesting proton-coupled electron transfer mechanism

Tailoring the Proton Source:

• Steric effects around the catalyst active site can influence substrate transport.

Proton sources

<u></u>N....H_∩

References

- Rail, M. D.; Berben, L. A. J. Am. Chem. Soc. 2011, 133, 18577
- Taheri, A.; Thompson, E. J. T.; Fettinger, J. C.; Berben, L. A. ACS Catal. 2015, 5, 7140
- Taheri, A.*; Carr, C. R.*; Berben, L. A. ACS Catal. 2018, 8, 5787 *equal contributions
- Taheri, A.; Berben, L. A. Inorg. Chem. 2016, 55, 378
- Cluff, D. B.; Arnold, A.; Fettinger, J. C.; Berben, L. A. Organometallics, 2018, ASAP
- Loewen, N. D.; Berben, L. A. Inorg. Chem. 2019, 69,

