

were pre-reduced in-situ at 320°C in 13.26% H₂/N₂ for 6 hours. The samples were exposed to 6.6% CO_2/N_2 for 30 minutes to test CO_2 adsorption capacity and exposed to 13.26% H₂/N₂ for 6 hours for catalytic hydrogenation. All steps are conducted at 320°C and 1 atm.

The adsorbent is optimized for:

- Adequate capture capacity
- Fast methanation kinetics
- Extent of hydrogenation
- ** Our adsorbent is **Na₂O**
- The catalyst is optimized for:
- High conversion at 320°C
- High selectivity towards methane
- ** Our catalyst is **Ru**
- ACKNOWLEDGEMENTS

Financial support: Anglo American Platinum, UK and Cohn Memorial Fellowship Samples for testing provided by SASOL, Germany

COLUMBIA ENGINEERING The Fu Foundation School of Engineering and Applied Science

Dual Function Materials for DAC and Point-Source CO₂ Capture and Conversion to Fuels Chae Jeong-Potter¹, Martha Arellano-Treviño², Robert Farrauto¹

¹Columbia University, Earth and Environmental Engineering Department; ²National Renewable Energy Laboratory, National Bioenergy Center

Point-Source Capture and Conversion

DFM for point-source capture process:

- Selective chemisorption of containing O_2 and steam
- or injection into pipelines

Aging study on DFM with simulated flue gas showed:

- on stream
- Slight improvement in Na₂O

Figure 3: Process flow diagram for CO₂ capture from power plants and synthetic natural gas (CH_4) generation using DFM

Reversible Direct Air Capture and Conversion

DFM for DAC:

- Selective chemisorption of CO_2 from air (1000 400 ppm CO_2 , high O_2 content)
- Desorb with N_2 purge at the same temperature
- Optional methanation possible with the introduction of H_2

Catalyzed DFM advantageous for:

- Promoting greater CO₂ capture capacity compared to noncatalyzed sorbent
- Providing option of producing methane from captured CO₂
- Methanation using catalyst allows for more rapid regeneration of material

FUTURE WORK

DFM for point-source capture:

- Scaled up aging study of low Ru loading and Ru-Ni DFM, followed by surface characterization of fresh and aged samples
- Pilot plant studies and exposure to real power plant flue gas
- Techno-economic assessment and life cycle assessment of DFM

DFM for DAC:

- Parametric studies to optimize temperature and flow rate for maximum capture, desorption, and methanation
- Kinetic studies to establish rates for adsorption, desorption, and catalytic conversion of CO_2
- Cyclic aging studies of DAC and desorption/methanation

Figure 5: Thermal gravimetric analysis profiles of catalyzed DFM and non-catalyzed DFM during adsorption of CO₂ from a dilute stream and subsequent (a) desorption upon introduction of N₂ and (b) hydrogenation upon introduction of hydrogen. All steps (adsorption, desorption, hydrogenation) occur at 320°C and 1 atm

 CO_2 from power plant flue gas, Introduce H_2 after saturation • Produce methane for recycle

Material is stable for 50 cycles

performance attributed to redispersion of both Ru and

Figure 4: Averaged results for every 10 cycles of 50 cycle aging study on 5% Ru, 6.1% "Na₂O"/Al₂O₃ tablets using simulated flue gas (7.5% CO₂, 4.5% O₂, 15% H₂O, balance N₂) CO₂ capture condition

REFERENCES

Bui, M., Adjiman, C., Anthony E. et al. *Energy Environ. Sci.* 11, 1062-1176 (2018)

Linn, J., Muehlenbachs, L. Journal of Environmental Economics and Management, 89, 1-28 (2018) Duyar, M.S., Arellano Trevino, M.A., Farrauto, R.J. Appl. Catal. B: Environmental **168**, 370-376 (2015)

Wang, S., Schrunk, E.T., Mahajan, H., et al. *Catalysts*, **7**, 88 (2017)

Wang, S., Farrauto, R.J., Karp, S. et al. Journal of CO2 Utilization 27, 390-397 (2018)

Arellano-Travino, M.A., He, Zhuoyan, Libby, M.C., Farrauto, R J., "Catalysts and adsorbents for CO₂ capture and conversion with dual function materials: Limitations of Ni-containing DFMs for flue gas applications," Journal of CO₂ Utilization **31**, 143-151 (2019)

Arellano-Trevino, M.A., Kanani, N., Jeong-Potter, C.W., Farrauto, R.J. "Bimetallic catalysts for CO₂ capture and hydrogenation at simulated flue gas conditions," Chemical Engineering Journal. (Submitted, accepted for publication, 2019)

Jeong-Potter, C., Farrauto, R.J., "Dual Function Materials (DFM) for Direct Air Capture", in prreparation